Providing time-discrete gait information by wearable feedback apparatus for lower-limb amputees: usability and functional validation

Simona Crea, Member, IEEE, Christian Cipriani, Senior Member, IEEE, Marco Donati, Maria Chiara Carrozza, Member, IEEE, Nicola Vitiello, Member, IEEE

Abstract— Here we describe a novel wearable feedback apparatus for lower-limb amputees. The system is based on three modules: a pressure-sensitive insole for the measurement of the planar pressure distribution under the prosthetic foot during gait, a computing unit for data processing and gait segmentation, and a set of vibrating elements placed on the thigh skin. The feedback strategy relies on the detection of specific gait-phase transitions of the amputated leg. Vibrating elements are activated in a time-discrete manner, simultaneously with the occurrence of the detected gait-phase transitions. Usability and effectiveness of the apparatus were successfully assessed through an experimental validation involving ten healthy volunteers.

Index Terms—Augmenting feedback, lower-limb amputees, vibrotactile stimulation, sensorized-foot insole, wearable technology.

I. INTRODUCTION

Somatosensory feedback provided by muscle and skin receptors in the leg is important for controlling balance and movement in humans [1]-[2]. Lower-limb amputees instead typically rely on haptic feedback from the stump-socket interaction to monitor ground contact and to stabilize balance. Unfortunately, skin irritation is common in the stump areas directly interacting with the socket resulting in poor haptic feedback and worsened gait performance [3]. Indeed, recent studies show that lack of adequate sensory information from a prosthetic leg leads to both poor balance and abnormal gait kinematics [4]-[6]. Amputees tend, for instance, to shift more weight and have a prolonged stance phase on the sound limb than on the prosthetic limb [7]-[9]. The abnormal kinematics and postural asymmetries can, in turn, lead to musculoskeletal diseases (e.g., osteoarthritis in the sound limb [10]). Moreover, reduced sensory feedback increases the cognitive effort when using the prosthetic device [11], affecting its acceptability [12] and may reduce mobility [5].

The prospect of restoring dependable somatosensory feedback in patients affected by limb amputation and gait disabilities has inspired many research teams to develop technological aids [10]-[17]. Many of these were designed to enhance gait rehabilitation by providing signals that indicate that a certain biomechanically relevant variable is outside a pre-set range [18]-[25] and patients are instructed to pay attention to this during rehabilitation sessions. Other devices were instead conceived to be permanently used by patients affected by lower-limb impairments. Such devices encode a specific measured or computed variable (e.g., the foot-ground interaction force) into a specific stimulus (e.g., electrical stimulation on the thigh). Patients are expected to incorporate the stimulations into their body control scheme, with the ultimate goal to restore a more physiological walking pattern (e.g., more symmetrical) [26]. Fan et al. [27], for instance, developed a wearable system based on piezo-resistive force sensors under the prosthetic foot sole and pneumatically-controlled balloon actuators placed on the thigh. Usability of this system was validated with healthy volunteers, while only a pilot test was carried out with an amputee [28]. Sabolich et al. [26] presented a feedback system based on time-continuous electrical stimulations through electrodes placed inside the socket: the stimulus magnitude was proportional to the pressure recorded by force sensors under the prosthetic foot. Initial results showed that this system can restore a more symmetrical gait pattern. Orpyx® Medical Technology Inc. recently introduced a sensory substitution system that establish a relationship between force sensors under an instrumented shoe and vibrators placed on the user's back but the usability of this concept has not yet been tested [29].

Our objective is to introduce a novel feedback system for lower-limb amputees previously presented only in a preliminary form [30]. The system is embeddable into lower-limb prostheses and designed to convey sensory information from a prosthetic foot sole to the individual. It has been designed to be completely wearable, highly acceptable and with low encumbrance. It comprises a sensorized prosthetic foot sole, a data processing unit and three miniaturized vibrotactile (VT) units placed on the stump in skin areas...
minimally interacting with the socket [Fig. 1]. The VT units provide non-invasive, easily wearable and highly acceptable stimulations, and have been used for sensory feedback in upper-limb amputees [31], and are effective in both providing information to the user for manipulation control [32] and for inducing embodiment of a hand prosthesis [33].

The novelty introduced by this work is twofold: firstly, the feedback is provided in a time-discrete fashion, synchronously with specific gait-phase transitions detected through the sensorized foot insole. We propose a time-discrete strategy to avoid some limitations of time-continuous stimulation: time-continuous modulation of a tonic, high-power stimulation can be perceived as cumbersome and unacceptable by a user while adaptation is known to occur to low-power time-continuous stimulation [34]. In line with recent theories stating that the human brain is prone to control behaviours by processing and incorporating time-discrete somatosensory information in its internal models [32], [35]-[36], time-discrete stimulation is proposed to lead to the perception of a rhythm that the amputee can incorporate in his or her body control scheme and learn to associate with a physiological gait pattern, without having to pay continuous attention to the modulation of a time-continuous stimulation [37]. Secondly, we have investigated the capability of humans to spatially and temporally perceive and discriminate low-power vibrations in a dynamic condition, i.e., during ground-level walking. Only a few studies have investigated the perception of vibrations on the thigh [38]-[40], i.e., one of the least sensitive areas of the body. We also tested how delays in the wireless communication from the sensorized insoles (and consequently in the detection of the gait phase) affect the perception of vibrations. Finally, we analysed the most relevant temporal gait parameters—stance time, swing time and step cadence—to test if the mechanical stimulation of the surface nerves of the thigh could lead to undesired changes in gait biomechanics.

II. MATERIALS AND METHODS

In this section we describe the different modules of the proposed system. In particular, we overview: 1) the pressure-sensitive insoles; 2) the algorithm to process insole data in order to address the gait segmentation and identify the biomechanical events (i.e., heel-strike, flat-foot, and toe-off) that are then encoded in time-discrete stimulations through the VT units; 3) the VT stimulation units. This section is then completed with the description of the experimental protocol.

In the tested system the central processing unit (differently from the concept shown in [Fig. 1]) did not run on the same board driving the VT units but on a remote Windows 7 64-bit desktop PC. The data flow diagram of the system used in this study is explained in [Fig. 2(a)].

A. Pressure-sensitive insoles

The pressure-sensitive insoles used in this study were developed at Scuola Superiore Sant’Anna (Pisa, Italy), presented in [41], and used in previous experiments on gait segmentation [42]. Each insole comprises an array of 64 pressure-sensitive elements. Each sensor of the array includes a light-emitting diode (LED) facing a photodiode as light receiver. These optoelectronic components were covered by a square-based pyramidal-frustum shell, made of opaque silicone, which deforms under the effect of a compressive force and, by means of an internal curtain, reduces the amount of light transmitted from the emitter to the receiver. This sensor showed high sensitivity to vertical loads, while low sensitivity to tangential loads. A detailed description of this technology was given in [43].

The array of sensors was connected to a custom electronic board, engineered by Robotech (Pecchioli, Italy), and devoted to sampling (frequency 1.2 kHz), low-pass filtering (cut-off 40 Hz), de-sampling (ratio 12:1) and transmitting data over a Bluetooth connection to a remote processing unit, i.e., the above mentioned remote desktop PC equipped with Bluetooth receivers. The electronic board, Bluetooth communication module and battery of the pressure-sensitive insole were housed in a plastic case outside the shoe in order to avoid any discomfort or gait alterations. The total weight of each insole and its plastic box with electronics and battery was 162 g.

B. Processing of pressure-sensitive insole data

The 64 voltage signals from the pressure-sensitive insole were collected and real-time processed by means of a custom Labview routine (NI, Austin, TX, USA), that computed the values of the vertical ground reaction force (vGRF) and the x and y coordinates of the center of pressure (CoP_x, CoP_y). The x and y axes identify respectively the medial-lateral and antero-posterior foot sole directions; the y coordinate spanned
0-250 mm corresponding to the toe and heel respectively.

Both vGRF and CoP coordinates are biomechanical variables commonly used to segment the gait in phases [44]. We used them to segment the gait cycle into three phases [Fig. 2(b)], viz., ‘Stance 1’ (ST1), ‘Stance 2’ (ST2) and ‘Swing’ (SW), using the following criteria:

$$\begin{align*}
\text{CoP}_x &= \text{CoP}_y = \text{NaN} \rightarrow \text{phase: SW} \\
vGRF &\geq 20 \text{ N and CoP}_y \geq 125 \text{ mm} \rightarrow \text{phase: ST1} \\
vGRF &\geq 20 \text{ N and CoP}_y < 125 \text{ mm} \rightarrow \text{phase: ST2}
\end{align*}$$

The proposed algorithm for gait-segmentation and command the vibrating elements is computationally efficient: 128 additions, 74 multiplications, 3 divisions and 4 numerical comparisons between double-precision floating-point numbers were used to calculate biomechanical variables and classify the gait phases while 2 additions and 2 multiplications were required to write the command to the serial port for driving the VT units. Accordingly, future implementations of the algorithm on a microcontroller will be easy, and the feedback system will be fully wearable.

C. Vibrotactile stimulation module

The three miniaturized VT units (Precision Microdrives, London, UK) each had a coin-like shape with 10-mm diameter, 10.2-mm height and weighed 3.6 grams. A custom electronic board controlled the vibrators to activate each VT unit independently. The electronic board was controlled from the desktop PC through a serial RS232 interface: given a command, VT units were activated within 2 milliseconds [45].

VT units were activated in a discrete manner in conjunction with the detection of gait-phase transitions, as shown in [Fig. 2(b)]. They produced vibrations at a frequency of 230 Hz, and were able to transfer a mechanical power of 600 mW to the thigh, with a peak force of ~1 N. They thus easily would activate Pacinian corpuscles [39], [40]. We confirmed in pilot studies that healthy subjects indeed easily perceived the vibration during quite standing and that the selected stimulation amplitude, i.e., just above perception threshold, was never perceived as bothersome.

D. Experimental protocol

Ten able-bodied subjects (6 females) participated in the study: age 27 ± 1.8; weight: 64.5 ± 6.6 kg; height: 1.70 ± 0.51 m; foot size: 38–42 EU. They were asked to bring comfortable sportswear and athletic shoes. Both shoes were equipped with pressure-sensitive insoles [Fig. 3(a-b)] and they wore a belt housing the electronic board [Fig. 3 (d)] for the control of the VT units [Fig. 3 (e)], which were placed on the upper part of the right thigh [Fig. 3 (c)]. Only signals from right insole [Fig. 3 (c)] were processed online to detect gait events and deliver VT stimulations; the left insole served only for offline analysis of gait parameters.

Fig. 3 (a) shows an overview of the feedback system worn by one subject during the experimental trials. VT units were secured to the thigh by means of silk seal tape. The entire equipment worn by the subjects neither hindered their movement, nor resulted in any discomfort.

Three VT units (labelled ‘VT#1’, ‘VT#2’ and ‘VT#3’) were placed on the longitudinal axis of the belly of the rectus femoris, vastus lateralis and biceps femoris, respectively [Fig. 2(c)], and were activated synchronously with the gait-phase transitions ST2-to-SW (i.e., toe-off), ST1-to-ST2 (i.e., flat foot) and SW-to-ST1 (i.e., heel strike), respectively. The duration of each time-discrete VT stimulation was set to 100 ms, i.e., long enough to be securely perceived and short enough to prevent VT unit activations to overlap.

The experimental procedures had two specific objectives: First, to test if subjects were able to detect vibrations applied on the thigh during walking and to what extent detection thresholds changed with increasing loss of synchronicity.
between the VT stimuli and specific gait-phase transitions. Second, to test if subjects learn to associate gait-phase transitions not only temporally but spatially, i.e., that specific VT units were associated with specific gait-phase transitions.

To achieve these objectives, subjects were instructed to walk on a treadmill at a speed of 2 km/h once they were equipped with the feedback apparatus. All subjects first completed a 6 minutes Training (T) session to familiarize them with the equipment and to allow them to learn the association between gait events and VT elements. The following 4 experimental sessions (6 min each) all included 'catch trials', i.e., trials during which the standard activation pattern of VT units were deliberately modified, and the subjects were asked to alert the experimenter whenever they detected such an event. The catch trials were defined by a custom Labview routine that before each session randomly selected 30 transitions among the 600 in 200 consecutive steps with the only constraint that there should be at least one full step (i.e., 3 gait-phase transitions) between catch trials. The order of the experimental sessions were randomized for each subject:

- **Missing stimulation (MS):** during this session, subjects were instructed to alert the experimenter by saying “No” if they detected that a VT stimulation was missing;
- **Missing stimulation with 200-ms delay (MS_D200):** as for MS but in all VT stimulations delayed 200 ms with respect to gait-phase transitions;
- **Missing stimulation with 500-ms delay (MS_D500):** as MS_D200 but with a 500 ms delay;
- **Wrong stimulation (WS):** as for MS but instead of omitting VT activations, an 'incorrect' VT was activated in catch trials.

Between each experimental session there was a 1-minute 'wash-out' during which the subject walked while receiving VT stimulation without any delayed, missing or wrong stimulation.

After the experiment, subjects completed a short questionnaire to score (i) their cognitive effort in identifying missing and wrong stimulations (score 1-5 for ‘none’, ‘little’, ‘moderate’, ‘high’, and ‘very high’) and (ii) the quality of perception of the different VTs (score 1 to 5 for ‘none’, ‘poor’, ‘fair’, ‘good’ and ‘very good’).

E. Data analysis

To evaluate the capability of the subjects to identify missing stimulations, we calculated the subjects' true and false positive identifications of the catch trials.

By means of one-way repeated-measures ANOVAs we analyzed the effects of delayed VT activation (i.e., sessions MS, MS_D200 and MS_500) on the total true and false positive rates for each VT unit and across all units. Post-hoc analyses with Bonferroni correction were performed when significant main effects were found.

Finally, to assess possible changes in gait as a consequence of the applied vibrotactile feedback we also calculated some temporal gait parameters. In particular we used data recorded from both insoles to calculate, for each step, the stance and swing duration, and the step cadence. One-way repeated measures ANOVA with post-hoc paired t-test were used to test the statistical difference of gait parameters in the four experimental sessions.

P<0.05 was considered statistically significant. All results are reported as mean ± standard error of mean unless otherwise stated.

III. RESULTS

A. Recognition of missing stimulations

Results on the correctly-recognized missing stimulations were summarized in [Fig. 4](#). The pattern in the aggregated data was identical in 7/10 subjects whereas 3 subjects showed the highest percentage of correctly recognized missing stimulations not in the MS session but in MS_D200; all subjects performed worse in the MS_D500 sessions.

There was a significant effect of delay on the percent total true positive responses (P<0.01) with MS_D500 differing from both MS and MS_D200 (P<0.01).

When considering individual VTs, the detection rates were for each VT significantly affected by the delay condition (MS, MS_D200 and MS_D500) but the patterns differed in a remarkable fashion [Fig. 4](#). VT#1 and VT#2 showed similar trends, i.e., a monotonic decrease of the percent true positive with increased VT activation delays. In contrast, in all subjects, the highest detection rates of catch trials involving VT#3 was found in the MS_D500 sessions.

The false positive rate was very low in all conditions: 4.9±4.3, 5.6±8.7 and 9±7.9 for MS, MS_D200 and MS_D500,
First, we wanted to avoid the adaptation phenomenon, which usually results from prolonged mechanical stimulation of skin receptors [46]. For this reason, the time-discrete questionnaires presented the results of the questionnaires.

The self-assessed perception of each VT revealed that the VT#3 was the one better perceived by all of the subjects (4.2 ± 0.6).

IV. DISCUSSION

In this work we have presented a novel apparatus aiming at partially replacing somatosensory information useful for gait control in lower-limb amputees. Along with the description of the system working principle and implementation, we carried out experiments with healthy subjects from which we conclude that the system has excellent usability and that time-discrete low-intensity feedback is readily perceived by humans and potentially can assist control of gait kinematics.

A. Usability of the system apparatus

The proposed feedback system was designed with final application in mind, i.e., amputees. As such, we opted for a solution with very low encumbrance: the VT units can be easily inserted in the socket of transfemoral amputees and the pressure-sensitive insole under the prosthesis is transparent to the user. Moreover, providing low-intensity time-discrete stimulations minimize the risk of discomfort after extended usage. Indeed, the first outcome from the experimental activities is that all of the subjects could easily wear the apparatus and successfully walk: none of them reported any discomfort from wearing neither the belt equipped with the vibrators control box, nor the shoes with the pressure-sensitive insole, even after the execution of all the experimental trials.

Despite the wearability of the pressure-sensitive insole and vibrating units, the current implementation prevents amputees from using the system in activities of daily living given that data recording and processing were carried out by a PC. However, porting the gait segmentation algorithm to a microcontroller embeddable into the vibrators control box, will be a straightforward engineering task.

Finally, effectiveness and unobtrusiveness of the feedback strategy was also demonstrated by the results of the self-assessment questionnaires. All the VT stimulations were easily perceived and all tasks were judged as moderately demanding.

B. Synchronicity of the stimulation with relevant gait phase transitions affects perception

By designing the stimulation strategy of the feedback apparatus, we considered two main requirements for providing effective and unobtrusive stimulations.

First, we wanted to avoid the adaptation phenomenon, which usually results from prolonged mechanical stimulation of skin receptors [46]. For this reason, the time-discrete

Table 1. Self-assessment questionnaire.

<table>
<thead>
<tr>
<th>Questions</th>
<th>Answer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Perceived effort in MS trial</td>
<td>3.2 ± 1.0</td>
</tr>
<tr>
<td>Perceived effort in WS trial</td>
<td>3.5 ± 1.1</td>
</tr>
<tr>
<td>Perceived increase in effort in MS_D200 & MS_D500 compared to MS</td>
<td>3.3 ± 1.3</td>
</tr>
<tr>
<td>Perception saliency of VT#1</td>
<td>3.0 ± 0.7</td>
</tr>
<tr>
<td>"---" VT#2</td>
<td>3.4 ± 0.8</td>
</tr>
<tr>
<td>"---" VT#3</td>
<td>4.2 ± 0.6</td>
</tr>
</tbody>
</table>
stimulation strategy was deemed appropriate to ensure the perception of stimulations without excessive excitation of the skin surface.

Second, vibrations of muscles can lead to excitation of muscle spindle afferents, and thereby alter proprioception and change gait biomechanics [47], and we therefore constructed a system delivering low-intensity vibrations.

However, the choice of using low-intensity vibrations, slightly above the perception threshold, was not risk free. First, it is well known that perception thresholds of mechanical stimulations on the skin changes from static to dynamic conditions [48]. Movement-induced decrease in sensitivity to cutaneous stimulation has been demonstrated repeatedly, for instance with respect to skin stimulation of both the hand [49], and the foot in dynamic conditions (e.g. during standing, walking and running [50]). Second, the threshold to detect task-irrelevant stimuli has been reported to vary dynamically during the step cycle [51]. To address these issue, we had to assess that the vibratory stimuli were actually perceived in dynamic conditions, i.e., during walking, and not ‘filtered’ away as task-irrelevant. The results from MS, provide strong evidence that even with low intensity stimuli healthy subjects after just a few minutes of training (i.e. around 6 minutes), readily perceived the stimulations and, importantly, readily detected when expected stimuli were not delivered (notice that the false-positive responses was on average 5/600, i.e., the subjects readily recognized the presence of practically every single VT activation). We also had to assess the perception of stimuli when vibrations were delivered at various moments during the step cycle, i.e., with delays with respect to the gait-phase transition in the MS sessions (i.e. 200 or 500 ms). Long latencies can under some conditions be expected with Bluetooth devices. Low-power Bluetooth devices for example, usually have latency time around 20 ms [52] with peaks up to 150-200 ms [53], [54]; moreover, when those kind of systems interfere with other wireless networks (e.g. WLAN networks) they can be affected by additional communication problems and consequently delays. Although wireless systems are rarely affected by communication delays longer than 200 ms, we investigated the worst possible scenarios, i.e. 200 and 500 ms. In addition, poor synchronicity between the actual gait events and the delivered feedback may, of course, be confusing to an end-user (visuo-tactile inputs are behaviorally ‘synchronous’ in multisensory integration tasks if the delay between them is <300 ms, [55]).

When the feedback was delayed 500 ms with respect to the corresponding gait-phase transitions, subject made more mistakes except for the catch trials involving VT#3 (Fig. 4). Interestingly, the three skin nerves stimulated by the three different VT units, respectively, have been reported to be subjected to different gating mechanisms during step cycles [51]. Given a gait cadence of about 0.5 Hz and a stance time of more than 1 s (Fig. 5), a 500-ms delay cause VT#1 and VT#2 to vibrate during either the initial or mid part of the swing phase, and VT#3 in the mid-stance phase, the latter being a phase in which somatosensory inputs from the standing limb are less affected by any masking effect deriving from concomitant afferent signals from the contralateral limb.

In short, the proposed feedback system can deliver information about the timing of gait-phase transitions in a reliable and effective manner and appears to be able to achieve this also in the presence of significant communication delays (≤ 200 ms).

C. Different gait-phase transitions were mapped on vibrating elements placed on different thigh sites in order to enrich the information conveyed to the subject

The effectiveness of a feedback system aimed at conveying information related to both the timing and the occurrence of a specific gait-phase transition relies on the capability of the subjects to identify the spatial location of the stimulation. To address this we conceived the experimental condition WS during which the timing of each stimulation was still correct and synchronous with each gait-phase transition while the correspondence between VTs and gait-phase transitions was purposively and randomly changed. Again, despite being exposed to the VT stimulation for only a short while, subjects successfully recognized more than 70% of wrong stimulation sequences with a negligible number of false-positive recognitions. The WS task is obviously more demanding than MS task and this may explain the higher variability across subjects. However, we claim that we have provided evidence that healthy humans quickly learn to spatially and temporally associate VT elements placed around the thigh and each associated with specific gait-phase transitions.

D. Low-intense discrete vibrations do not affect gait biomechanics

As already mentioned, application of vibrations on muscles (or tendons) modifies the proprioceptive information from muscles and thus may alter the gait biomechanics and posture [46]. For instance, when standing, muscle vibration can cause body tilting or the illusion of ego- or exo-motion, depending on the conditions of the stimulation [56]. Furthermore, the delivery of vibrations onto thigh and shank muscles during walking has effects on the posture (subjects tend to move forward) and on the walking speed (the gait cadence tends to increase) [57]. The vibrations provided by the VT units – lasting ~100 ms and transducing <1 W – were not intended to stimulate muscle receptors and cause undesired changes of the subject’s gait biomechanics, and indeed, we found no such effects with the proposed system.

E. Limitations of this study and future experiments

Having healthy individuals as subjects does not, of course, allow any simple extrapolation to unilateral transfemoral amputees. Not only may their stump skin show higher sensory thresholds than in healthy subjects but there is a risk that VT units placed in a socket may be damped by the stump liner; these technological problems seem solvable. While the present results show that human readily learn the spatial and temporal relationship between time-discrete feedback delivered by vibrotactile units and specific gait-phase transitions, the main future challenge is to demonstrated that a system providing such feedback actually promotes physiological gait patterns. Finally, the subjective psychological acceptability of the
system will be object of future analyses.

ACKNOWLEDGMENT

The authors would like to thank Prof. B. B. Edin for helping in editing the manuscript and Eng. M. Moïse for helping with artwork in [Fig. 1].

REFERENCES

in the period 2007–

tly an Associate Professor, Senior Member of the IEEE.

The article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSRE.2014.2365548, IEEE Transactions on Neural Systems and Rehabilitation Engineering

Christian Cipriani (S’06–M’09–SM’12) received the M.Sc. degree in electronic engineering from the University of Pisa, Italy, in 2004 and the Ph.D. in BioRobotics from the IMT Institute for advanced studies, Lucca, Italy in 2008.

He is currently an Associate Professor and Head of the Artificial Hands Area at The BioRobotics Institute, Scuola Superiore Sant’Anna, Pisa, Italy. He is the Coordinator and PI of the WAY Project (ICT #288551) funded by the European Commission, of the MYHAND Project (no. RBFR10VCLD) funded by the Italian Ministry of Research and of the PPR3 Project funded by the National Workers’ Compensation (INAIL). He was Visiting Scientist at the University of Colorado Denver | Anschutz Medical Campus, in 2012, and he founded a spin-off company, in 2009. His research interests cover mechatronic, controllability and sensory feedback issues of dexterous robotic hands to be used as thought-controlled prostheses. Dr. Cipriani won the d’Auria Award for prototypes of innovative robotic devices to aid the motor disabled from the Italian Robotics and Automation Association, in 2009. In 2011 he was awarded with an early career grant (FIRB program) by the Italian Ministry of Research and with a Fulbright Research Scholar fellowship. He is a Senior Member of the IEEE Robotics and Automation Society and the IEEE Engineering in Medicine and Biology Society.

Marco Donati received the M.Sc. degree in Biomedical Engineering from the University of Pisa, Italy, in 2010. He is currently working toward the Ph.D. degree in Biorobotics at Scuola Superiore Sant’Anna of Pisa, Italy. His research activities are focused on the development and validation of novel human-robot interfaces by means of distributed pressure sensors.

Simona Crea (M’14) received the MSc degree in biomedical engineering (cum laude) from the University of Pisa, Italy in 2012. She is currently working toward the Ph.D. degree in BioRobotics at the BioRobotics Institute, Scuola Superiore Sant’Anna, Pisa.

She is involved in research at the Wearable Robotics Laboratory, Scuola Superiore Sant’Anna. Her current research interests include the development of wearable sensors for studying human-robot interaction and the development of novel robot-assisted neurorehabilitation paradigms for people affected by neurological disorders.

Prof. Dr. Maria Chiara Carrozza (M’11) received the Laurea degree in physics from the Uni-versity of Pisa, Italy, in 1990 and the PhD in Engineering at Scuola Superiore Sant’Anna (SSSA), in 1994. Since November 2006, she is Full Professor of Biomedical Engineering and Robotics at SSSA. In the period 2007-2013 she was the Rector of SSSA. On 2013 she was elected Member of the Italian Parliament; from April 28, 2013 until February 2014 she was the Italian Minister for Education and Research; from March 2014 to May 2014 she was Member of the Committee on Productive activities, Commerce and Tourism of the Italian Parliament; from June 2014 she is Member of the Committee.
on Foreign Affairs of the Italian Parliament. She has scientific and coordination responsibilities within several national and international research projects. Her research interests are in rehabilitation engineering, wearable robotics, cybernetic hands, robotic devices for upper and lower limb functional replacement and augmentation, tactile sensors. She currently co-ordinates a group of 30 people, comprising PhD students, Post-docs and assistant professors. She is author of several scientific papers (more than 80 ISI papers and more than 120 papers in referred conference proceedings) and of 12 patents.

Dr. Nicola Vitiello (M’12) received the MSc degree in biomedical engineering (cum laude) from the University of Pisa, Italy, in 2006, and from Scuola Superiore Sant’Anna, Pisa, Italy, in 2007. He also received the PhD degree in biorobotics from Scuola Superiore Sant’Anna, Pisa, Italy, in 2010. He is currently Assistant Professor with The BioRobotics Institute, Scuola Superiore Sant’Anna where he leads the Wearable Robotics Laboratory. He is the author or co-author of 27 ISI/Scopus papers and 30 peer-review conference proceedings papers. He has served as the Scientific Secretary of the EU FP7 CA-RoboCom project, and he is currently the Project Coordinator of: the EU FP7 CYBERLEGS Project, the IUVO Project funded by Fondazione Pisa, and the EARLYREHAB Project funded by Regione Toscana. His main research interests include the development of wearable robotic devices for human motion assistance and rehabilitation and of robotic platforms for neuro-scientific investigations. In 2006, he participated the IX European Space Agency (ESA) Student Parabolic Flight Campaign as member of the team of Scuola Superiore Sant’Anna. In 2008, he participated the first ESA Lunar Robotics Challenge as a PhD Student Member. In the last five years he served as Referee for more than ten different ISI journals.