
 
 

 

 

I. INTRODUCTION 

 

Abstract— We present an automated gait segmentation 
method based on the analysis of foot plantar pressure patterns 
elaborated from two wireless pressure-sensitive insoles. The 64 
pressure signals recorded by each device are elaborated to 
extract 10 feature variables which are used to segment the gait 
cycle into 6 sub-phases following a simplified version of Perry’s 
gait model. The method is based on a Hidden Markov Model 
with a minimum phase length constraint and a univariate 
Gaussian emission model, which is decoded using a classic 
Viterbi algorithm. The method is tested on a pool of 5 healthy 
young subjects walking at two different speeds, through a 
leave-one-out cross-subject validation. The results show that 
the method is highly effective, yielding to an average 
performance of about 95% of correct phase classification, and 
85 to 90% of phase transitions detected inside an acceptance 
window of 50ms. 

HE detection of gait phases (gait segmentation) is a 
critical component of gait analysis, and is fundamental 

in a variety of fields, including clinical gait analysis and 
biomechanics [6][7][8][9]. Gait-phase related signals have 
been also proposed and applied as control variables for 
functional electrical stimulation treatments [16][17] and for 
active robotic prostheses [24]. 

In all these application fields, the development of 
automated methods to replace the human expert in 
performing the analysis of gait signals is of clear advantage. 
Several methods have been developed to automate this task, 
differing in terms of sensory systems, algorithms, and 
quality of the segmentation. 

A number of sensors has been proposed to perform gait 
segmentation, especially wearable sensors, including 
gyroscopes [16], accelerometers [17], force sensing resistors 
[16] and other force-contact sensors [18]. The clear 
advantage of low-encumbrance wearable systems is that of 
bringing gait analysis outside the laboratory environment 
[19], allowing long-period real-world measures. All methods 
allow to segment the gait in sub-phases, and therefore to 
compute temporal parameters [20] (e.g. the relative duration 
of the stance phase). The computation of other quantitative 
 

Manuscript received January 15, 2012. This work was supported in part 
by the EU within the EVRYON Collaborative Project STREP (FP7-ICT-
2007-3-231451) and by the CYBERLEGs Project (FP7-ICT-2013-287894). 
S.M.M. De Rossi, S. Crea, M. Donati, N. Vitiello, T. Lenzi and M.C. 
Carrozza are with The BioRobotics Institute, Scuola Superiore Sant’Anna, 
viale Rinaldo Piaggio 34, Pontedera (PI), Italy. (S.M.M. De Rossi is 
corresponding author, phone: +39 050883472; e-mail: s.derossi@ieee.org).  

P. Rebersek, D. Novak, J. Podobnik and M. Munih are with the 
Laboratory of Robotics, University of Ljubljana, Slovenia. 

parameters of interest (e.g. the peak ground reaction force 
during push-off, or the peak pressure during the heel strike) 
requires additional sensors, most commonly a force plate. 

In this work, we propose an automated segmentation 
method based on the analysis of plantar pressure patterns 
recorded from two synchronized wireless foot insoles [1]. 
Our method uses a common machine-learning technique, 
Hidden Markov Models (HMMs, [10]), which has been 
widely applied to statistical pattern recognition in, e.g., voice 
recognition [22] and computer vision [21], as well as in gait 
segmentation [23] . Compared to other works (e.g. 
[16][23][18]), our method can segment the gait into an 
higher number (six) of phases, following a slightly 
simplified version of the classic gait model by Perry [6] with 
no swing-phase sub-division. Moreover, it does not require 
any subject-specific calibration or training, and requires a 
very simple signal pre-processing, making it potentially 
applicable on-line. The method has been tested on five 
healthy subjects at two different gait speeds. 

II. MATERIALS AND METHODS  

A. Subjects and Protocol 
Five healthy young subjects (age: 28.8 ± 3.6) were chosen 

to span a wide range of body mass (weight 60-80 Kg, 
average 70.8 ± 7.4, height 172.8 ± 2.6 cm), with a similar 
shoe size (41.5-43 EU size). The subjects had no discernable 
gait abnormalities, and were comfortable in wearing the 
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Figure 1. Subject walking freely while wearing the instrumented shoes.  

The Fourth IEEE RAS/EMBS International Conference
on Biomedical Robotics and Biomechatronics
Roma, Italy. June 24-27, 2012

978-1-4577-1200-5/12/$26.00 ©2012 IEEE 361



 
 

 

equipment, which did not hinder their movements. 
Upon arrival, subjects wore comfortable sportswear and 

athletic shoes, equipped with an in-shoe pressure 
measurement system [1] (see Figure 1). Each subject was 
asked to walk on a straight line, starting from a still position 
at one end of the room, and ending at the opposite end. 
Subjects were instructed to walk at two different speeds: a 
normal pace and a fast pace, which were chosen freely by 
each subject. 100 steady-state steps were recorded for each 
walking speed, for a total of 200 steps for each subject, and 
1000 steps in total. Transitory steps (such as initial and 
terminal steps) were not processed. The main characteristics 
of the subjects are summarized in Table I. 

B. Measurement System 
Two pressure-sensitive insoles were inserted in the shoes 

of the subject, in place of the regular insoles. This device 
(shown in Figure 2), preliminary presented in [1], is made of 
an array of 64 optoelectronic pressure sensors embedded in a 
layer of silicone. The sensor technology was presented in 
[2][3], and applied to measure a wide range of different 
loads. The sensor array measures the pressure over the 
plantar area (with the exception of the plantar arch), and 
transmits the data sampled at a 100Hz frequency, wirelessly 
to a remote data logging computer. 

This sensorized insoles can fit into a normal sneaker shoe 
of EU size 42. Foot sizes from 41 to 43 can fit comfortably 
in the instrumented shoe, which can run continuously for up 
to 7-8 hours with an on-board battery. The insoles require an 
off-line characterization [1], but no subject-specific 
calibration. 

C. Data Processing 
For each foot, the 64 voltage signals are converted into 

pressure values through a pre-computed calibration function 
(see [1]). A Laplacian surface smoothing algorithm [4][5] is 
applied to the pressure map to remove pressure outliers and 
regularize the surface.  

The pressure map is used to extract the values of vertical 
ground reaction force (vGRF), the position of the center of 
plantar pressures (CoPx, CoPy), and the partial ground 
reaction forces on the foot tip (vGRFt) and heel (vGRFh). 
For each insole, a total of 10 signals are considered, 
consisting on the 5 aforementioned variables and their first-
order time derivatives. All these aggregate values are of 
common interest in gait analysis and are classically 
employed to divide the gait into phases [6][7][8][9]. 

D. Gait Segmentation 
The bipedal gait model used in this work divides the gait 

into six phases, summarized in Table II, which were defined 
as follows: 

- DS1: Bipedal support phase preceding right foot 
monopodal stance (left leg swing). This phase is 
comprised between the second peak of left foot vGRF 
(beginning of the left toe-off event) and the first peak 
of the right foot vGRF (end of right-foot heel strike). 
In this phase, left vGRF decreases to transfer support 
to the right foot, increasing right vGRF. 

- RS1: Right monopodal stance (1). This phase starts 
from the end of DS1, and concludes to the low peak of 
right vGRF. This phase is connected to the upward 
acceleration of the body, which unloads the 
supporting foot. 

- RS2: Right monopodal stance (2). This phase 
concludes the right stance (and left swing), from the 
end of RS1, to the second high peak of right vGRF. In 
this phase, the load is transferred to the tip of the right 
foot. 

- DS2: Bipedal support phase preceding left foot 
monopodal stance (right leg swing). 

- LS1, LS2 are equivalent to RS1 and RS2. 
The gait model employed in this work is a simplified 

version of the classic gait model by Perry [6], which divides 
each cycle into 8 phases (5 stance, 3 swing). A comparison 
of the two models, shown in Table II, highlights that our 
model is less specific in the segmentation of the swing 
phase, and that the RS1, RS2 (LS1, LS2) correspond only 
roughly to the midstance and terminal stance as defined in 
[6]. It can be also seen in Table II that each phase of our 
model determines the state of both legs. Based on these 

 
(a) 

 
(b) 

Figure 2. Pressure sensitive insole used in the experiment. The device is 
shown (a) outside the shoe and (b) inside the shoe. In black, the array of 
pressure sensors covered by a silicone layer. In white, the housing for 
the processing and transmission electronics. Picture from [1]. 

TABLE I 
SUBJECT CHARACTERISTICS 

Subject Age 
[y] 

Weight 
[Kg] 

Height 
[cm] 

Shoe Size 
[EU size] 

1 34 60 176 41.5 
2 31 80 171 41.5 
3 27 68 175 43 
4 27 73 172 42 
5 25 73 170 42.5 
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definitions, the whole dataset was manually segmented by an 
expert who analyzed carefully the vGRF profiles, and 
marked the transitory events dividing each cycle into the six 
phases. An example segmentation is shown in Figure 3. 

E. Machine Learning Method 
Based on this analysis, we hypothesize that the observed 

signals (20, as defined previously) are modeled by a 6- states 
Hidden Markov Model (HMM) [10], with 20 observable 
states (emissions). Let 𝑺𝑺 = {𝑆𝑆𝑖𝑖 , 𝑖𝑖 = 1. .6} be the set of hidden 
states, corresponding to the set {DS1, RS1, RS2, DS2, LS1, 
LS2}, and 𝒁𝒁 = {𝑧𝑧1, . . , 𝑧𝑧20} the set of observable emissions. 

As shown in Figure 4, which represents the connections 
between gait phases, we chose a left-right cyclic model, 
which represents well the gait phase pattern during steady-
state conditions. Only transitions to the next phase and self-
transitions are allowed in this model. 

The underlying Markov Model is defined by a set of 
parameters 𝝀𝝀 = (𝝅𝝅,𝑨𝑨,𝑩𝑩), where 

𝜋𝜋𝑖𝑖 = Pr  [𝑋𝑋(𝑡𝑡0) = 𝑆𝑆𝑖𝑖 , 𝑖𝑖 = 1. .6] 
is the prior probability vector (probability of the Markov 
chain to occupy a certain state at 𝑡𝑡0), 𝑨𝑨 is the 6 × 6 state 
transition probability matrix, defined by 

 

⎩
⎨
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and 𝑩𝑩 is the 20 × 6 emission matrix, which describes, for 
each state, a univariate Gaussian random variable of the 
emissions. In particular, 

𝐵𝐵𝑖𝑖𝑖𝑖 = (𝜇𝜇𝑖𝑖𝑖𝑖 ,𝜎𝜎𝑖𝑖 )  
where the contribution of the state 𝑖𝑖 to the emission 𝑧𝑧𝑖𝑖  is a 
random variable 𝒩𝒩(𝜇𝜇𝑖𝑖𝑖𝑖 ,𝜎𝜎𝑖𝑖 ).  Following our choice of a left-
right model, as depicted in Figure 4, the only allowed 
transitions (Aij > 0) are those to the same state Aii  and to the 
subsequent state Aii+1.  

Starting from the segmentation performed by the expert as 
described in Section II.D, each observed emission at time 𝑡𝑡 
was labeled with a reference state 𝑆𝑆𝑟𝑟𝑟𝑟𝑟𝑟 (𝑡𝑡). The reference 
labeling was used partly to train the HMM, and partly to 

evaluate the performances of the automated segmentation 
method. 

To keep the method simple, no input pre-processing was 
performed prior to the application of the HMM. In 
particular, no feature extraction, dimensionality reduction or 
frequency-space transforms were applied to the observed 
emissions 𝒁𝒁. Most importantly, no (subject-dependent) 
normalization was applied to the signals. 

The Leave-One-Out Cross-Subject Validation (LOOCV, 
see [10][11]) approach was applied to the training and 
validation of the method. In particular, data gathered from 
𝑁𝑁 = 𝑄𝑄 − 1 = 4 subjects was used to train and optimize the 
HMM, while data from the remaining subject was used for 
validation. LOOCV was applied five times to all possible 
subject subsets to test the generalization capabilities of the 
method. For each repetition of the LOOCV, the union of the 
datasets of the 𝑁𝑁 training subjects makes up the training 
dataset (800 gait cycles), while the remaining data makes up 
the testing dataset (200 gait cycles). 

The model parameters 𝝀𝝀 were estimated from the training 
dataset through a simple statistical estimation method. The 
transition matrix elements 𝐴𝐴𝑖𝑖𝑖𝑖  were calculated as 

𝐴𝐴𝑖𝑖𝑖𝑖 =
𝑇𝑇𝑖𝑖𝑖𝑖
𝑁𝑁𝑖𝑖

 

were 𝑇𝑇𝑖𝑖𝑖𝑖  is the number of samples of the training dataset 
with a transition from state 𝑆𝑆𝑖𝑖  to state 𝑆𝑆𝑖𝑖 , and 𝑁𝑁𝑖𝑖  is the total 
number of samples labeled with state 𝑆𝑆𝑖𝑖 . The elements of 

TABLE II 
GAIT PHASES 

 Our Model Perry’s Model [6] 

Symbol  Right Foot Left Foot 

DS1 Double 
Support (1) 

Initial Contact, 
Loading Respose Preswing 

RS1 Right 
Stance (1) ~Midstance Initial Swing, 

Midswing 

RS2 Right 
Stance (2) ~Terminal Stance Midswing, 

 Terminal Swing 

DS2 Double 
Support (2) Preswing Initial Contact, 

Loading Respose 

LS1 Left stance 
(1) 

Initial Swing, 
Midswing ~Midstance 

LS2 Left Stance 
(2) 

Midswing,, 
Terminal Swing ~Terminal Stance 

 

 
Figure 3. Example of segmentation of a gait cycle in subphases made by the 
expert. On the two top panels, vertical ground reaction force from the right 
(top) and left (bottom) insoles. Three weight lines are put for reference, 
corresponding to 80%, 100% and 130% of the subject weight.  On the 
bottom panel, the reference segmentation is shown, with transitions 
highlighted by a vertical line. 
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emission matrix 𝑩𝑩 were computed by respectively the 
sample mean and sample standard deviation of the emissions 
in each state. The prior probability vector was set to 
𝝅𝝅 = (1, 0, 0, 0, 0, 0) to represent the known state DS1 from 
which all observation started. The HMM structure was fixed 
to a six-state left-right model (Figure 4), therefore no 
structure estimation algorithm (like the Baum-Welch 
algorithm [13]) was required.  

Testing of the method was done using the Viterbi 
decoding algorithm [15], which estimates the most likely 
state 𝑆𝑆𝑟𝑟𝑒𝑒𝑡𝑡 (𝑡𝑡) based on the previous estimation 𝑆𝑆𝑟𝑟𝑒𝑒𝑡𝑡 (𝑡𝑡 − 1) 
and current observable emissions 𝒁𝒁(𝑡𝑡). The Viterbi 
algorithm was run on the entire testing dataset, and the 
estimated labeling was then compared to the reference to 
evaluate its performances. 

A common problem when using the Viterbi algorithm in 
left-right HMMs is that of deletions and insertions [11], 
consisting respectively in missed detections of full gait 
cycles, and erroneous insertion of quick cycles when no 
transitions should have been detected. A simple solution to 
this problem is that of imposing a minimal duration to each 
state (phase) 𝑆𝑆𝑖𝑖 . Transitions which are decoded before the 
minimum phase length are rejected, and the estimated state 
𝑆𝑆𝑟𝑟𝑒𝑒𝑡𝑡 (𝑡𝑡) is kept to the original value 𝑆𝑆𝑟𝑟𝑒𝑒𝑡𝑡 (𝑡𝑡 − 1). The minimal 
duration vector was estimated starting from the average 
duration of each phase in the whole training dataset, and was 
set to half of the mean value, to encompass all the variability 
in the duration of gait phases across subjects. 

Implementation of the HMMs, of the Baum-Welch and of 
the Viterbi decoding algorithms were done using 
MATLAB® by Mathworks, and the HMM toolbox [12]. 

F. Evaluation of Performances 
The performance of the algorithm was evaluated with the 

LOOCV method based on two performance indices. On one 
side, we computed the percentage of right (and wrong) 
classifications 𝑛𝑛, as 

𝑛𝑛 =
#(𝑆𝑆𝑟𝑟𝑒𝑒𝑡𝑡 (𝑡𝑡) = 𝑆𝑆𝑟𝑟𝑟𝑟𝑟𝑟 (𝑡𝑡))

#𝑆𝑆𝑟𝑟𝑟𝑟𝑟𝑟 (𝑡𝑡)
 

The performance 𝑛𝑛 was computed over the whole dataset, 
outside of a tolerance window of 5 samples (50ms) about 
each reference transition. The tolerance window accounts for 
a minimal discretionary variability in the estimate, which is 
also present in the segmentation by the expert. In addition to 

this, the precision of the method was evaluated by 
computing the number of transitions detected inside the 
acceptance window. 

To evaluate the performance of the algorithm at different 
walking speeds, the entire dataset was also split into a fast 
gait dataset, and a normal gait dataset. All the performance 
indices were computed on the testing dataset as a whole, and 
on the fast and normal datasets separately.  

III. RESULTS 
Table III reports the steps cadence in the normal and fast 

gait datasets. The average step cadence (across all subjects) 
was 0.85 ± 0.08 Hz (102 ± 10 steps/min) for the normal gait, 
and 1.06 ± 0.05 Hz (127 ± 6 steps/min) for the fast gait, for 
an average of 0.96 ± 0.07 Hz (115 ± 8 steps/min). Cadence 
was computed as the inverse of the duration of a complete 
gait cycle. Figure 5 shows an example run of the Viterbi 
decoder on the HMM model, on the data of three steps 
(normal walking speed). For the sake of simplicity, only a 
subset of 3 of the 20 variables is shown, along with the 
reference and the estimated gait phase. 

Table IV presents the classification performances of the 
automated algorithm in terms of percentage of correct 
estimates. Results are shown for the entire testing set, and 
for the normal and fast gait dataset separately. Each row of 
the table corresponds to the HMM being trained on the 
whole dataset (normal and fast) from 4 out of 5 subjects, and 
tested on the remaining subject normal, fast and whole 
datasets. Figures are also reported averaged across all 
subjects. 

Table V shows the fraction of phase transitions detected 
by the algorithm inside a 50ms window about the reference 
transition. Results are shown for each testing subject and 
each of the 6 transitions, and averaged across all subjects. 

No insertions nor deletions were present after the Viterbi 
algorithm was run, thanks to the minimum duration 
constraint included in the decoder. 

IV. DISCUSSION 
The overall performance shown by our method in Table 

IV denotes an high specificity in the capacity to segment and 
classify the gait cycle into sub-phases. The average 
performance of 96% right classification (with a minimum of 
93% and a maximum of 97%) corresponds roughly to 6 
wrong samples for each gait cycle. This performances are in 
line with state-of-the-art methods, both using rule-based 
approaches [16], or machine learning methods [23][25][29].  

This is particularly remarkable in light of the higher 
complexity of the model employed in our algorithm, which 
includes 6 gait phases (equivalent to Perry’s [6] standard 
model, with no swing segmentation), instead of four 
[23][16] or less [26][27]. 

Comparable performance holds when looking at the 
datasets split by gait pace. However, it can be seen that the 
method is less performing in slower gait (average 93%), than 
in fast gait (average 98.5%). This could be in part explained 

 
Figure 4. Hidden Markov Model representing the phases of a gait cycle. 
Each state of the Markov Model is identified by a circled label, and allowed 
state transitions are marked by an arrow. A sketch of the human represents 
each phase (the right leg is highlighted in grey). Sketches are adapted from  
[14]. 
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by the different walking pattern during fast gait (which 
includes sharper transitions and force peaks), and also by the 
higher relative width of tolerance windows in steps of 
shorter duration. 

In all cases however, it is clear after the LOOCV that the 
method generalizes to different subjects with highly variable 
body characteristics (see Table I). This is interesting since 
the method does not require a subject-specific calibration, 
and is shown to work well even when tested with subjects of 
very different weight compared to the average of the dataset 
(see e.g. subject 2). 

In terms of precision in the detection of transitions, it can 
be seen that, with the exception of one subject, an average 
85 to 90% of events are detected inside the 50ms tolerance 
window about each reference transition. This is in line with 
other works using pressure insoles, like [26][29]. A closer 
look to results in Table V shows however that some 
transitions are detected with much less precision, reaching a 
lowest value of less than 50% of 𝑆𝑆2 → 𝑆𝑆3 transitions 
detected inside the window, and a very low average value 
for the same transition across subjects. This is determined in 
particular by subject 3 and 4, and reflects to the ‘twin’ 
transition S5→ S6, at least for subject 3, suggesting lesser 

generalization capabilities by the HMM in relation to this 
event.  

The worst-case performances, both in terms of worst-
performing subject (number 2), and worst-performing 
transition, are not satisfactory, thus requiring further 
investigations to increase the reliability of the method. 

Compared to similar machine-learning based methods 
(e.g. [27][25][29]), this algorithm requires no subject-
dependent calibration, and, most importantly, a very simple 
data pre-processing, with no need of frequency-space 
transforms or dimensionality reduction. This characteristics, 
together with the use of the Viterbi algorithm, make this 
method potentially applicable to an on-line phase estimation, 
alike rule-based methods [16][28]. This could extend the 
applicability of this method to FES or robot prostheses 
control. 

On top of this, a field of applicability of this method is 
that of quantitative gait analysis (for both medical or 
biomechanical purposes) outside of the laboratory 
environment. We used a wireless pressure-measurement 
insole with long autonomy to segment the gait. Our method 
therefore could allow not only to evaluate temporal gait 
parameters (e.g. relative duration of the stance or sub-stance 
phases) but also kinetic parameters (e.g. peak vGRF during 
push-off) using the same wearable sensory system. 

TABLE III 
GAIT CADENCE 

Subj
ect 

Normal Gait 
Cadence 

[𝜇𝜇 ± 𝜎𝜎, Hz] 

Fast Gait 
 Cadence 

[𝜇𝜇 ± 𝜎𝜎, Hz] 

Average Cadence 
[𝜇𝜇 ± 𝜎𝜎, Hz] 

1 0.89 ± 0.07 1.12 ± 0.08 1.01 ± 0.08 
2 0.83 ± 0.09 1.07 ± 0.05 0.95 ± 0.08 
3 0.86 ± 0.08 1.04 ± 0.03 0.95 ± 0.06 
4 0.86 ± 0.08 1.02 ± 0.02 0.94 ± 0.05 
5 0.82 ± 0.09 1.07 ± 0.05 0.95 ± 0.07 

Avg. 0.85 ± 0.08 1.06 ± 0.05 0.96 ± 0.07 
 

TABLE IV 
PERCENTAGE OF RIGHT (WRONG) CLASSIFICATION IN THE TESTING SETS 

Subject Normal Gait 
[%] 

Fast Gait 
[%] 

All gait cycles 
[%] 

 

1 94.8 (5.2) 97.9 (2.1) 96.4 (3.6)  
2 90.3 (9.7) 99.2 (0.8) 94.8 (5.2)  
3 88.3 (11.7) 97.5 (2.5) 92.9 (7.1)  
4 94.4 (5.6) 99.8 (0.2) 97.1 (2.9)  
5 95.1 (4.9) 98.3 (1.7) 96.7 (3.3)  
Avg. 92.6 (7.4) 98.5 (1.5) 95.6 (4.4)  

 
TABLE V 

PERCENTAGE OF TRANSITIONS INSIDE THE TOLERANCE WINDOW 

 State (Phase) Transitions 
 

Subj
ect S1→ S2 S2→ S3 S3→ S4 S4→ S5 S5→ S6 S6→ S1 

1 90.5 90.9 90.5 85.2 93.9 92.1 
2 75.6 87.8 74.5 97.1 91.9 90.8 
3 92.5 66.9 77.0 81.5 67.5 76.0 
4 93.2 48.4 97.1 98.4 86.5 89.0 
5 89.2 70.7 92.6 89.3 91.3 97.1 
Avg. 88.2 72.9 86.3 90.3 86.2 89.0 
 

 
Figure 5. Example results of the Viterbi decoder compared to the 
segmentation by an expert. On the top panels, three representative observed 
variables (vGRF, CoPY and CoPY’) are shown for the right foot. CoP 
values are shown only during the stance phase. On the bottom panel the 
solid line shows the reference segmentation, the dashed line the output of 
our algorithm.  
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V. CONCLUSION 
We presented an automated gait segmentation method 

based on the analysis of foot plantar pressure patterns 
elaborated from two wireless pressure-sensitive insoles. The 
method requires simple pre-processing of the signal data, no 
subject-specific calibration, and uses the straightforward 
Viterbi HMM state decoding algorithm. Consequently, the 
method could be easily applied on-line. 

The method performed well on average on the pool of 
subjects, leading to classification performances close to 
95%. 85 to 90% of phase transitions were detected inside an 
acceptance window of 50 ms, with the exception of one 
subject. For some specific phase transitions (and in a 
subject-dependent way), the method underperformed, 
reaching, in the worst case, a performance of 70% transition 
events detected inside the acceptance window. 

Future works will be aimed at increasing the 
performances of the algorithm, especially in the worst case 
scenarios. More elaborate pre-processing techniques will be 
investigated, such as the application of feature-extraction 
methods to the raw input, relative normalization of the data, 
and frequency-transform techniques. 
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