
  

 

Abstract— We present an automated segmentation method 

based on the analysis of plantar pressure signals recorded from 

two synchronized wireless foot insoles. Given the strict limits on 

computational power and power consumption typical of 

wearable electronic components, our aim is to investigate the 

capability of a Hidden Markov Model machine-learning 

method, to detect gait phases with different levels of complexity 

in the processing of the wearable pressure sensors signals. 

Therefore three different datasets are developed: raw voltage 

values, calibrated sensor signals and a calibrated estimation of 

total ground reaction force and position of the plantar center of 

pressure. The method is tested on a pool of 5 healthy subjects, 

through a leave-one-out cross validation. The results show high 

classification performances achieved using estimated 

biomechanical variables, being on average the 96%. Calibrated 

signals and raw voltage values show higher delays and 

dispersions in phase transition detection, suggesting a lower 

reliability for online applications. 

I. INTRODUCTION 

The detection of gait phases is a critical component of gait 

analysis, and is fundamental in a variety of fields, including 

clinical gait analysis and biomechanics [1]. Gait-phase 

related signals have been also proposed and applied as 

control variables for functional electrical stimulation and for 

active robotic prosthesis. In all these application fields, the 

development of automated and reliable methods to replace 

the human expert in performing the analysis of gait signals is 

of clear advantage. Automated gait segmentation methods 

[2][3][4] have been found particularly interesting in 

combination with the use of wearable sensors, with the 

advantage of bringing gait analysis outside the laboratory 

environment and allowing to perform all-day-long 

measurements. Wearable sensors to measure foot plantar 

pressure [4] are a natural choice to perform gait 

segmentation, since they provide critical measurements 

related with gait phases.  

In this work, we propose an automated segmentation method 

based on the analysis of plantar pressure signals recorded 

from two synchronized wireless foot insoles [5], using a 

common machine-learning technique, Hidden Markov 

Models (HMMs, [6]). Given the strict limits on 
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computational power and power consumption typical of 

wearable electronic components, in this work we focus on 

the development of a (computationally) simple method with 

high segmentation performances, starting from a previous 

method presented in [7]. In particular, our aim is to 

investigate the capability of a HMM machine-learning 

method to detect gait phases with different levels of 

complexity in the pre-processing of the wearable pressure 

sensors signals. We try to evaluate the best compromise 

between trying to keep a low computational cost, and the 

need of a high segmentation reliability and precision. 

II. METHODS 

A. Subjects and Protocol 

Five healthy young subjects (age: 28.8 ± 3.6) were chosen to 

span a wide range of body mass (weight 60-82 Kg, average 

72.6 ± 9.0, height 173.2 ± 2.2 cm), with a similar shoe size 

(41.5-43 EU size). Subjects wearing athletic shoes, equipped 

with an in-shoe pressure measurement system [5] (see Figure 

1) were asked to walk on a straight line at normal pace speed 

which was chosen freely by each subject. 150 steady-state 

steps were recorded for each subject, 750 steps in total. 

Transitory steps (initial and terminal steps) were not 

processed. The main characteristics of the subjects are 

summarized in Table I. 

B. Measurements System 

Two pressure-sensitive insoles were inserted in the shoes of 

the subject, in place of the regular ones. This device, 

presented in [5], is made of an array of 64 optoelectronic 

pressure sensors embedded in a layer of silicone. The sensor 

technology was presented in [8][9]. The wearable sensor 

array measures the pressure over the plantar area and 

transmits the data sampled at a 100Hz frequency, wirelessly 

to a remote data logging computer.  

C. Data Processing and Dataset Building 

For each foot, the 64 voltage signals are converted into their 

relative force values though a non-linear pre-computed 

function. Pressure values are then extracted through a 

calibration function (see [5]) and a Laplacian surface 

Development of Gait Segmentation Methods for Wearable Foot 

Pressure Sensors 

S. Crea, S. M. M. De Rossi, M. Donati, P. Reberšek, D. Novak, N. Vitiello, T. Lenzi, J. Podobnik, M. 

Munih, M. C. Carrozza 

TABLE I 

SUBJECT CHARACTERISTICS 

Subject 
Age 

[y] 

Weight 

[Kg] 

Height 

[cm] 

Shoe Size 

[EU size] 

1 34 60 176 41.5 

2 25 82 172 42 

3 31 80 171 41.5 

4 27 68 175 43 

5 27 73 172 42 
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smoothing algorithm is applied to the pressure map to 

remove pressure outliers and regularize the surface. The 

pressure map is used to extract the values of vertical ground 

reaction force (vGRF) and the position of the center of 

plantar pressures (CoPX, CoPY).  

According to the different level of pre-processing 

complexity, three input datasets are built:  

- Raw Signals: it includes the first 8 principal 

components of the 128 (64 for each foot) raw 

voltage signals recorded at each instant; 

- Calibrated Signals: it includes the first 8 principal 

components of the 128 calibrated pressure values; 

- Biomechanical Variables: this dataset is made of 8 

biomechanical variables, 4 for each foot: vGRF and 

CoPY and their first-order-time derivatives. These 

variables are classically employed to divide the gait 

into phases [1]. 

D. Gait Segmentation 

The gait model used in this work divides the gait into six 

phases, according to a simplified version of the classic gait 

model by Perry [1]. The right foot was taken as reference for 

the segmentation. Gait phases are defined as follows: 

- LR: Loading Response. It begins with right floor contact 

and continues until the left foot is lifted for swing.  

- MS: Mid Stance. It begins as the left foot is lifted and 

continues until body weight is aligned over the right forefoot. 

This phase is connected to the upward acceleration of the 

body, which unloads the supporting foot. 

- TS: Terminal Stance. It begins with right heel rise and 

continues until left foot strikes the ground. This phase 

concludes the right stance (and left swing).  

- PS: Pre-Swing. It begins with initial contact of the left limb 

and ends with the right toe-off. The right limb uses its 

freedom to prepare for the rapid demands of swing.  

- S1: Swing (1). This phase starts from the end of PS and 

ends when the left vGRF reaches its low peak. 

- S2 : Swing (2). This phase is comprised between the left low 

peak and the right-foot heel strike. 

The gait model employed in this work is a simplified version 

of classic Perry’s model [1], which divides each cycle into 8 

phases. Our simplified version does not include the so-called 

Initial Contact, occurring when the right foot just touches the 

floor, because it is identified by a rapid peak that cannot be 

captured with the working bandwidth. Our model is also less 

specific in the segmentation of the swing phase.  

The whole dataset was manually segmented by an expert 

who analyzed ground reaction force profiles, and marked the 

transitory events dividing each cycle into the six phases. An 

example of segmentation is shown in Figure 2. 

E. Machine Learning  

We hypothesize that the observed signals are modeled by a 

6-states Hidden Markov Model (HMM) [6], with 8 

observable states (emissions). Let S={Si,i=1..6}  be the set of 

hidden states, corresponding to the set {LR, MS, TS, PS, S1, 

S2}, and Z={z1,..,z8} the set of observable emissions. 

We chose a left-right cyclic model, which represents well the 

gait phase pattern during steady-state conditions.  

The underlying Markov Model is defined by a set of 

parameters λ=(π,A,B), where 

πi= Pr[X(t0)=Si,i=1,..,6] 

is the prior probability vector (probability of the Markov 

chain to occupy a certain state at t0), A is the 6x6 state 

transition probability matrix, defined by 
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and B is the 8x6 emission matrix, which describes, for each 

state, a univariate Gaussian random variable of the 

emissions. In particular, 

Bij=(µij,σj) 

where the contribution of the state j to the emission zi is a 

random variable N(µij,σj).  Following our choice of a left-

right model,  the only allowed transitions (Aij>0) are those to 

the same state Aij and to the subsequent state Aij+1.  

Starting from the segmentation performed by the expert, 

each observed emission at time t was labeled with a 

reference state Sref(t). The reference labeling was used partly 

to train the HMM, and partly to evaluate the performances of 

the automated segmentation method. 

The Leave-One-Out Cross-Subject Validation (LOOCV) 

approach was applied to the training and validation of the 

method. In particular, the union of data gathered from N=Q-

1=4 subjects (600 gait cycles) was used to train and optimize 

the HMM, while data from the remaining subject (150 gait 

cycles) was used for validation. LOOCV was applied five 

times to all possible subject subsets to test the generalization 

capabilities of the method. 

The model parameters λ were estimated from the training 

dataset through a simple statistical estimation method. The 

transition matrix elements Aij were calculated as 

    
   

  

 

where Tij is the number of samples of the training dataset 

with a transition from state Si to state Sj, and Ni is the total 

number of samples labeled with state Si. The elements of 

emission matrix B were computed by respectively the sample 

mean and sample standard deviation of the emissions in each 

state. The prior probability vector was set to π= (1,0,0,0,0,0) 

to represent the known state LR from which all observations 

started. Testing of the method was done using the Viterbi 

decoding algorithm, which estimates the most likely state 

Sest(t) based on the previous estimation Sest(t-1) and current 

observable emissions Z(t). The Viterbi algorithm was run on  

 
Figure 1. Pressure sensitive insole used in the experiment. In black, the 
array of pressure sensors covered by a silicone layer. In white, the 

housing for the electronics. Picture from [5]. 
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the entire testing dataset, and the estimated labeling was then 

compared to the reference to evaluate its performances. 

 A common problem when using the Viterbi algorithm in 

left-right HMMs is that of deletions and insertions [6], 

consisting respectively in missed detections of full gait 

cycles, and erroneous insertion of quick cycles. A solution to 

the problem of insertions is that of imposing a minimal 

duration to each state Si, in which transitions decoded before 

the minimum phase length are rejected.  

Implementation of the HMMs and of the Viterbi decoding 

algorithms were done using MATLAB® by Mathworks, and 

the HMM toolbox [10]. 

F. Evaluation of Performances 

The performance of the algorithm was evaluated with the 

LOOCV method based on two indices. On one side, we 

computed the percentage of right classifications 𝑛, as 

𝑛  
 (    ( )      ( ))

     ( )
 

The performance 𝑛 was computed over the whole dataset, 

outside of a tolerance window of 5 samples (50ms) about 

each reference transition. The tolerance window accounts for 

a minimal discretionary variability in the estimate, which is 

also present in the segmentation by the expert. The precision 

of the method was also evaluated by computing the average 

and standard deviation of delays of the detected transitions. 

III. RESULTS 

Table II reports the classification performances of the 

automated algorithm in terms of percentage of correct (and 

wrong) estimates. Results are shown for the three different 

datasets. Each row of the table corresponds to the HMM 

being trained on the dataset from 4 out of 5 subjects, and 

tested on the remaining subject. In the last row the 

classification average across all subjects is reported. 

Table III shows separately for each dataset the average and 

standard deviation of the delays in terms of number of 

samples, for each phase transition. Delays are calculated as 

the difference between the moment of the estimated and the 

reference transition. The last column of the tables shows a 

total performance index across subjects, calculated as the 

root mean square of the average delays and the average of 

standard deviations for each phase transition. This index 

summarizes the dispersion of the delays around the mean 

value for each transition. 

IV.  DISCUSSION 

The overall performance shown by our method in Table II 

denotes a high specificity in the capacity to segment and 

classify the gait cycle into sub-phases when biomechanical 

variables are used. The average performance of 95.9% right 

classification (94.9%-96.8%) corresponds roughly to 6 

wrong samples for each gait cycle, for an average of 1 for 

each phase transition. This performances are in line with 

state-of-the-art methods [2][3][4]. Performances markedly 

fall when the simple raw or calibrated signals are used, 

despite the second dataset (72.3%-88.4%) exhibits better 

performances if compared with the first one (70.7%-80.3%). 

The highest performances reached with the biomechanical 

variables dataset can be explained by two reasons: on one 

side, the reference segmentation was performed on the total 

ground reaction force profile; on the other side, aggregated 

variables are less noisy then raw variables given the complex 

smoothing techniques used to extract them. Moreover, the 

use of raw signals showed the further disadvantage of 

deletions which do not occur when calibrated values or 

biomechanical variables are used. 

The Total Index showed in Table III demonstrates the high 

capability of the algorithm to detect phase transition when 

biomechanical variables are used. Phase3-Phase4 transition 

and the ‘twin’ Phase6-Phase1 transition are recognized by 

the model with high precision, having the lowest average 

delays and low standard deviations (0.8±3.7 for Phase3-

Phase4, 1.3±1.7 for Phase6-Phase1). The worst cases in 

terms of average delay and dispersion are Phase2-Phase3 

and Phase5-Phase6 transitions. This behavior is probably 

due to the less pronounced landmarks in the curves, which 

generates a higher variability in phase transition detection 

when manual segmentation is carried on and, consequently, 

when testing is performed. Also calibrated and uncalibrated 

signals datasets exhibit the highest variability within 

transition from Phase5 to Phase6. They show, however, 

higher dispersions even in all the other phase transitions, 

suggesting a lower reliability in online applications. A 

TABLE II 
PERCENTAGE OF RIGHT (WRONG) CLASSIFICATION IN THE TESTING SET 

 
Raw 

[%] 

Calibrated 

[%] 

Biomechanical 

Variables 
[%] 

Subject 1 80.3(19.7) 88.4(11.6) 96.3(3.7) 

Subject 2 71.6(28.4) 81.9(18.1) 95.9(4.1) 

Subject 3 71.6(28.4) 72.3(27.7) 96.8(3.2) 

Subject 4 79.9(20.1) 78.1(21.9) 94.9(5.1) 

Subject 5 70.7(29.3) 78.8(21.2) 95.5(4.5) 

Average 74.8(25.2) 79.9(20.1) 95.9(4.1) 

 
 

 

 
Figure 2. Example of segmentation of a gait cycle in sub-phases made 

by the expert. On the two top panels, vertical ground reaction forces 
from the right (solid line) and left (dashed line) insoles, and their first-

order-time derivatives. On the bottom panel, the reference segmentation 

is shown, with transitions highlighted by vertical lines. 
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comparison between raw and calibrated signals suggests that 

the average delays are lower for calibrated dataset for 

transitions Phase1-Phase2 Phase3-Phase4 and Phase5-

Phase6, while in the other cases raw dataset exhibits better 

results. Despite this, dispersion around the average delays, 

quantified by the average standard deviation, is lower for all 

transitions, with the calibrated dataset. This suggests that the 

calibrated signal set allows for a higher reliability and 

consistency in the estimation of phase transitions. 

V. CONCLUSION 

We presented an automated gait segmentation method based 

on HMM applied to signals coming from a set of wearable 

foot insoles. The HMM was trained and tested on three types 

of input, differing for the complexity of the pre-processing 

applied to raw pressure signals.  

The highest performances are reached with dataset formed 

by the biomechanical variables, which require an expensive 

calibration to be performed (94.9%-96.8%). Performances 

achieved using the calibrated dataset are between 72.3% and 

88.4%, while those reached using raw voltages range 

between 70.7% and 80.3%. This suggests that it is extremely 

difficult to reach high (>90%) specificity values if only 

simple data processing methods are used. 

Future works will be focused on decreasing the 

computational cost required to compute the biomechanical 

variables, to reduce average and dispersion of delays and 

make the algorithm reliable in the detection of gait initiation 

and termination. 
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TABLE III 

AVERAGE AND STANDARD DEVIATION OF DELAYS IN TERMS OF NUMBER OF SAMPLES FOR PHASE TRANSITIONS IN THE TESTING SET 

 Raw Signals 

 Subject 1 Subject 2 Subject 3 Subject 4 Subject 5 Total Index 

Phase1-Phase2 12.6±6.2 -4.8±11.6 4.3±11.5 5.3±4.9 6.9±10.6 7.4±9.0 

Phase2-Phase3 4.0±6.6 8.8±11.0 7.6±10.9 4.6±6.1 6.4±12.9 6.5±9.5 

Phase3-Phase4 -7.4±4.1 8.4±12.2 17.3±13.5 -6.5±6.5 -2.9±8.9 9.7±9.0 

Phase4-Phase5 -1.9±8.6 3.0±15.6 -0.2±8.9 6.6±9.3 4.2±5.2 3.8±9.5 

Phase5-Phase6 -3.1±10.6 15.1±11.9 -7.9±14.6 2.4±12.1 4.7±9.7 8.1±11.8 

Phase6-Phase1 -1.5±5.6 12.2±18.9 -0.4±10.7 -7.8±13.8 2.3±5.8 6.6±11.0 

 

 Calibrated Signals 

 Subject 1 Subject 2 Subject 3 Subject 4 Subject 5 Total Index 

Phase1-Phase2 -2.0±5.9 -0.6±5.8 3.8±7.7 8.5±6.0 1.4±9.6 4.3±7 

Phase2-Phase3 -6.6±6.3 2.9±8.5 8.2±8.1 4.3±9.5 12.3±12.1 7.6±8.9 

Phase3-Phase4 -4.2±1.8 8.0±10.2 11.5±11.7 3.0±8.3 1.2±10.5 6.7±8.5 

Phase4-Phase5 2.9±3.7 2.1±7.1 7.8±7.1 10.7±12.1 5.0±2.9 6.5±6.6 

Phase5-Phase6 0.7±8.6 8.2±11.3 9.9±9.7 1.9±13.2 0.1±12.3 5.8±11.0 

Phase6-Phase1 -6.3±4.3 10.4±5.1 18.5±16.5 -8.0±5.9 9.4±11.1 11.3±8.6 

 

 Biomechanical Variables 

 Subject 1 Subject 2 Subject 3 Subject 4 Subject 5 Total Index 

Phase1-Phase2 1.6±2.7 0.2±1.4 0.9±2.0 2.4±2.4 -3.8±4.2 2.2±2.5 

Phase2-Phase3 2.1±4.0 3.7±6.4 1.2±3.6 2.3±4.6 4.4±4.3 3.0±4.6 

Phase3-Phase4 -1.0±4.2 -1.1±3.6 0.6±4.3 -0.8±2.3 -0.2±3.9 0.8±3.7 

Phase4-Phase5 3.3±2.9 0.9±4.2 1.7±3.9 4.6±3.6 0.2±1.1 2.7±3.1 

Phase5-Phase6 5.2±5.5 5.9±12.2 4.5±7.4 6.9±7.0 4.0±4.7 5.4±7.4 

Phase6-Phase1 -1.2±1.3 -1.1±1.1 -1.0±0.8 -1.6±1.5 1.7±3.7 1.3±1.7 
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