Selecting the best number of synergies in gait:
preliminary results on young and elderly people
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Abstract—Matrix factorization algorithms are increasingly
used to extract meaningful information from multivariate EMG
datasets. However a key issue is the selection of the number of
synergies (i.e., model order) to retain. In this preliminary work
a set of criteria, based on Independent Component Analysis, was
developed to determine the number of synergies to extract from a
multivariate EMG dataset, and applied on EMG signals acquired
from 12 leg muscles during walking at different cadences (40,
60, ..., 140 strides per minute) in young and elderly subjects.
The method was tested on ad-hoc created datasets with a pre-
determined number of embedded sources and amplitude of
added noise. Young subjects walking patterns are explained by
a number of synergies not significantly different with respect to
elderly subjects. The inter-subject variability is greater at high
(elderly) and low (young and elderly) cadences suggesting that the
walking pattern is more stable at central frequencies. The type
of preprocessing influences the number of underlying synergies:
an increased number of independent components is needed to
explain the variability of unfiltered data. The proposed method
could serve as a guideline to scientists in the evaluation of walking
performance. Further developments will include a validation of
the method and its extension to other factorization algorithms.

I. INTRODUCTION

Several studies found evidence of modifications in gait
patterns and muscle activations in healthy people brought about
by aging [15], such as reduction in walking speed [11], [21],
increased repeatability in EMG signals (suggesting a decreased
neural plasticity [18]) and increased fall risks [12]. These
findings suggest that neuromuscular adaptation, whether it is
due to aging itself, lack of physical activity, or pathologies
[6], [13], may be revealed by some features of gait pattern
and EMG signals during gait training.

In order to extract meaningful features from EMG signals,
several Matrix Factorization (MF) techniques (e.g. Principal
Component Analysis - PCA [22], Independent Component
Analysis - ICA [3], Factor Analysis - FA and Non-negative
Matrix Factorization - NMF [20]) have been developed with
the aim of parsing multivariate signals into a set of maximally-
informative components, called muscle synergies, which may
better represent the main central features of the motor pro-
grams. Tresch et al. identified PCA-ICA (ICA performed on
the subspace defined by PCA) and pICA (probabilistic ICA
with nonnegativity constraints) as the best performing methods
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for extracting synergies, closely followed by NMF, and FA
which demonstrated good robustness across datasets as well
[20].

One of the main theoretical issues to overcome when
applying ICA (and MF techniques in general) is that of
determining the model order, that is the number of components
(synergies) that should be retained. In general PCA-based
dimensionality reduction needs to be carefully considered, as
interesting components may present part of their variance in
the low-power region of the eigenspectrum [9]. This choice is
often made heuristically as it depends on application-specific
and subjective considerations, for instance by adopting the
popular eigenvalue > 1 criterion or by placing a threshold on
the cumulative variance explained by the extracted factors [5],
[10], [14], [17]. Other criteria include scree plots or Laplacian
information criterion (LIC) for PCA, Bartlett’s test for subsets
of PCA components, likelihood ratios, projected variance for
ICA components, Akaike and Bayesian information (AIC,
BIC). D’ Avella et al [4] proposed a method to model muscle
synergies by explicitly introducing activation delays and to
determine their number by identifying the slope change of
the total variation explained (R?) with respect to the number
of retained factors. On the whole the basic assumption of
these methods is that the random variation attributable to
noise is smaller than the structured variation of the synergy
combinations. However a great amount of noise could impair
the performance of these methods as the MF algorithm may
not able to successfully disentangle information from noise
anymore (e.g. PCA [20]). In that case the noise would be
distributed among the factors thus making it impossible to
select the correct number of synergies based on the explained
variance.

The aim of this work is to propose a set of criteria to
determine the best number of synergies to extract from a
EMG dataset with ErpICASSO [1], an improved version of
the popular FastICA [8] and ICASSO [7] algorithms. In this
preliminary study the ErpICASSO technique was applied on
the EMG (12 ipsilateral leg muscles) of young and elderly
people while walking over ground in a wide range of ca-
dences with the aim of determining whether aging and pace
significantly affect the number of underlying synergies. The
possible differences in the results, dependent on the type of



preprocessing of the EMG data, were also determined. The
proposed criteria, although not always completely conclusive,
are based not only on PCA-explained variance, but also take
into account the intrinsic variability of the data by employing
trial-to-trial bootstrapping and clustering thus providing a
reliability measure and a robust estimate of the number of
synergies. These criteria are validated on an ad-hoc constructed
dataset (using the recorded data), address the statistical and
algorithmic reliability of estimated independent components,
and could be used whenever dealing with multivariate EMG
walking data.

II. MATERIALS AND METHODS
A. Experimental setup and preprocessing

Data collection methods are briefly reported here although
they have been previously described [16]. Seven young (4
males, 3 females; 27.34+4.9 yr old) and seven elderly (4 males,
3 females, 69+1.4 yr old) healthy subjects were enrolled with
a protocol in accordance with the Local Ethical Committee.
The experiments were carried out in a 15-m-long room where
subjects walked over ground.

The EMG signals of 12 leg muscles belonging to the
right leg [gluteus medius, gluteus maximus, tensor fascia
latae, adductor longus, peroneus longus, semitendinosus (ST),
gastrocnemius lateralis, soleus, rectus femoris, vastus medialis,
tibialis anterior, biceps femoris] were recorded using surface
EMG electrodes (NORAXON, Telmyo 2400T, V2), at a sam-
pling rate of 1000H z and 1000 as gain amplifier. The heel
strike and toe-off related to the right leg were recorded by
means of footswitches. The subjects walked respectively at
the cadences of 40, 60, 80, 100, 140 steps/min (in randomized
order) at the beat of a metronome to account for the fact that
younger people walk with a lower frequency, even if the speed
remains unaltered. The data recorded between two consecutive
right-leg heelstrikes is a trial.

After rejecting for each subject the first and last three right-
side strides [2], [19] the data were high-pass filtered (inverse
Chebyshev, 10H z, 108" order) and then processed in three
different ways to obtain three distinct datasets: X (¢): the data
is left as it is; Xo(¢) the data is fully rectified and low-pass
filtered (inverse Chebyshev, 5H z, 77" order); X. 3(t) the data
is fully rectified, low-pass filtered (inverse Chebyshev, 5H z,
77" order), averaged over trials and time-interpolated over
200 points [10].

B. Selection of the number of Synergies

The n-dimensional dataset X;(¢) (i = 1,2, 3) was linearly
mapped by ErpICASSO [1] onto a set of m maximally in-
formative, independent components (ICs) S;(¢) by means of a
mixing matrix A (n,m) such that X, (¢) = AS;(¢). ErpICASSO
is a ICA-based method that combines (i) algorithm starting
point randomization, (ii) trial-to-trial bootstrapping of the input
data, (iii) Curvilinear Component Analysis (CCA), to give a
measure of the reliability of the ICs extracted.

Within ErpICASSO, FastICA was run 150 times on X;(t)
with (i) symmetrical approach, (ii) “fanh” as contrast function,
(iii) turned-on stabilization, (iv) stopping criterion e = 107°,
(v) 10* as maximum number of iterations and (vi) m as number
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Fig. 1.  The Figure shows the explained variance (top), the number of
ambiguous IC replicates (middle) and the average Iq (bottom) while varying
the model order m from 2 to 12 for a representative subject. The best
performance (dashed red line) is obtained for m = 7.

of embedded sources. Each time the algorithm starting point
was randomized and the data were trial-to-trial bootstrapped
with replacement for the datasets X;(t), Xs(¢), and point-
to-point bootstrapped with replacement for the dataset X35(t)
(one averaged trial). CCA was used as a multidimensional
scaling method to project the points onto a two-dimensional
space so as to obtain a similarity map. The columns of the
150 replicates of A were clustered according to their mutual
similarities. The ambiguous IC replicates (i.e., IC runs that
yielded two or more components belonging to the same cluster)
were removed. The IC reliability was defined as the tightness
of its cluster (i.e., the quality index Iq) ranging from 0% to
100%. The average reliability was computed as the average
Iq (Ig) of the m clusters. The model order m (number of
synergies extracted or, equivalently, the number of retained
ICs) varied from 2 to 12 (number of input variables). The
final model order m corresponded to that with (i) a rate of
ambiguous IC replicates £ < 30%, (ii) the maximum value of
Iq — ¢ (that is the maximum quality and minimum number of
ambiguous IC replicates) and (iii) more than 85% of explained
variance. The matrix A is built with the best IC estimates, that
is the centroids of the replicates belonging to each cluster.

Finally the selection of the number of synergies was per-
formed for each dataset with the three types of aforementioned
preprocessing procedures. The effect of cadence (six levels),
groups (two levels), type of preprocessing (three levels) and
their interaction on the number of extracted synergies was
studied with a three-way ANOVA (confidence level 95%).

C. Testing

Although an extensive validation is advisable, testing was
performed by selecting a few datasets and computing a number
m < 12 of synergies for X5(¢) using Erp[CASSO. The



IC dataset S;(¢) was then backprojected to obtain a reduced
dataset X,.q(t) = ASa(t). A dataset of uniformly distributed
noise N (t) was then generated with an amplitude equal to 10%
of the maximum amplitude of X5(t), processed in the same
way as Xs(t) (i.e., fully rectified and low-pass filtered with an
inverse Chebyshev, 5Hz, 77" order) and added to X,.q(t).
Noticeably the statistical structure of X,... = X,eq(t)+N(t) is
modified artificially by noise with the same frequency content.
While frequency-based techniques are not able to reconstruct
the informative content of X,.., this constitutes a good dataset
to test whether ErpICASSO is able to detect the correct number
m of synergies, that is the threshold that separates real process
information from noise. Accordingly, to validate the proposed
criteria, ErpICASSO was performed both on X,.. and X, .4
with the same procedure described in the former section. The
data analysis was carried out off-line by means of customized
MATLAB (The MathWorks Inc., Cambridge, MA, US) scripts.

IIT. RESULTS

The EMG signals of 12 leg muscles belonging to the right
leg were collected from 14 subjects (7 young and 7 elderly)
while walking over ground at different cadences. Each record-
ing (one for each subject and cadence) was processed in three
separate ways to obtain the datasets X;(¢) (no preprocessing
- raw data), X2(¢) (medium preprocessing - filtering), X3(t)
(heavy preprocessing - filtering and averaging over gaits).
ErpICASSO was then applied on each dataset with the criteria
explained in section II to determine the number of underlying
synergies.

Figure 1 shows the results of ErpICASSO on a representa-
tive subject. In particular, from top to bottom (i) the explained
variance, (i) the number of ambiguous IC replicates and (iii)
the Iq are shown while varying the model order m from 2 to
12 (number of variables). According to the rules described in
Section II, in this case the best model order was m = 7. As
the figure shows, seven components explain more than 85%
of the total dataset variance while minimizing the number of
ambiguous IC replicates and maximizing the average quality
index. Considering all the subjects, m varied from 3 to 12 with
an average value of 7.0£1.3, 3.5+ 1.9, 4.0+ 1.2, respectively
for Xl,XQ,Xg.

In Figure 2 the similarity map shows the 7 clusters corre-
sponding to the ICs selected for the same subject. Each black
dot represents a component of a single run estimate. The best
estimates (i.e., centroids) for each cluster are circled in blue.
The quality index Iq is a measure of the compactness level of
the points within each cluster. Ideally a perfect agglomeration
would collapse onto a single point. The isolated points far
from the main clusters are generally the ones which correspond
to FastICA strokes (i.e the algorithm is stuck between two
points), included in the number of ambiguous IC replicates.

The results of the testing of the criteria to select the best
number of synergies are displayed in Figure 3. X,.. was
constructed with m = 4 synergies and 10% of added noise
(see section II). According to expectations, the quality index /¢
reaches its maximum at the value m = 4 and starts decreasing
from m = 5 onwards. The number of ambiguous IC replicates
instead starts to increase significantly from m = 6 onwards.
The final results are shown in Table 1.
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Fig. 2. The Figure shows the similarity map of a representative subject
with 7 ICs selected, that is a scatterplot of the similarities between estimates
projected in two dimensions by means of the Curvilinear Component Analysis
(CCA) used as a multidimensional scaling method. Each black dot represents
a single run estimate and the centroid of each cluster is circled in blue. The
less sparse is the cluster the more reliable the related ICs are.

For each type of processing (X, Xa, X3), group (el-
derly, young) and cadence (40, 60, ..., 140) the number of
synergies was studied with a three-way ANOVA (confidence
level 95%). Noticeably the type of preprocessing of the data
significantly changes the number of ICs that best explain the
data (p < 0.001). In accordance to expectations, raw data
require more synergies (7 on average) than filtered data (3 or 4)
due to the greater high-frequency content. The number of ICs
is not altered either by cadence or by age. For all the datasets,
particularly for the elderly, the variability (standard deviation)
is minimum at central frequencies (80-120 strides/min).

IV. DISCUSSION

In this work a set of criteria, based on Independent Com-
ponent Analysis, was developed to determine the number of
synergies to extract from a multivariate EMG dataset and was
applied on the data acquired during locomotion (at different
cadences) of young and elderly subjects. The proposed tech-
nique, although it still requires an extensive validation, aims
at providing an answer to the deeply felt issue of selecting
the correct model order when dealing with a multivariate
dataset [5], [10], [14], [17]. In fact, although in principle MF
techniques can be applied without any model-order reduction,
in practice, particularly in the case of ICA, the quality of
the decomposition may be greatly improved by PCA because
the noise level is reduced. This approach however is likely to
fail if the threshold that separates information from noise is
not correctly identified. On this score ErpICASSO combines
bootstrapping and randomization of the algorithm (FastICA)
starting point, while changing the dimensionality reduction
performed by PCA, thus enabling the user to set up a number
of criteria to select the correct model order. Although the
procedure described could be wrapped to almost any MF
algorithm, ICA was adopted as it guarantees the extraction of



TABLE 1.

THE TABLE SHOWS THE MEAN AND STANDARD DEVIATIONS OF THE NUMBER OF SYNERGIES OF YOUNG AND ELDERLY SUBJECTS AT

DIFFERENT CADENCES (40-140 STRIDES/MIN). THE RESULTS ARE REPORTED FOR THREE DIFFERENT PREPROCESSING LEVELS. RAW-DATA VALUES ARE
SIGNIFICANTLY HIGHER (p < 0.001) THAN THE FILTERED-DATA ONES (THREE-WAY ANOVA, 95% THRESHOLD).

X1(t) Raw data
Strides/min 40 60 80 100 120 140 Average
Young 74+£05 | 71+£11 | 7.7+08 | 74£08 | 74+£08|68+11]7.3+08
Elderly 6.0+21|71+12]66+11|73+£08|69+15]66+£21]67£15
X>(t) Filtered data
Young 32+35(|24+£35| 3+£35 [38+16|57+24 |57+£05]34+1.7
Elderly 5735 | 4£28 [ 34+£11|27+04|28+07| 3£35 |3.6x£21
X3(t) Filtered, averaged data
Young 35+£10|34£13|40+£06 | 51+20|39+1.1|41£09|40x1.3
Elderly 43+15|139+£07|39+£1.1|40+£06 |3.7+14|35+£1.1|39+£1.1
maximally-independent components by minimizing the mutual TESTING
information between sources and it is particularly well-suited _ Explained Variance [%]
to EMG datasets [20]. £ 100 =
g i
A preliminary testing of the proposed criteria was per- g %r :
formed by artificially creating a dataset of four synergies % 8ol i
and by adding noise with overlapping frequency characteris- £ ;
tics. Figure 3 gives evidence that PCA alone is not able to & s 4 s e 7 s s 10 11 12
completely disentangle information from noise: according to - Ambiguous IC replicates
PCA in fact, in the testing dataset 4 synergies explain almost = ! o
100% of the variance, indicating that the extracted factors Lg €0 I
also captured the artificially-added noise. Notwithstanding this, 2 4or :
it was possible to identify the correct number of underlying 20 !
factors. With respect to the variance explained alone, the Iq o— : L T ST P
and the number of ambiguous IC replicates add a significant Average Quality Index
amount of information on the data structure. 00 i : ' ; ‘
1
Regarding the results on the experimental data, g 8 :
ErpICASSO was used to determine the effects that age & 6ol i
and cadence have on the number of synergies that best : :
account for the muscular activations during walking. The B s 4 5 6 7 8 8 10 11 1
results may also help in assessing walking performance, e.g., SiRdelordenm
with prosthetics.
Considering X, (t), it can be observed that the Variability Fig. 3. The Figure shows the explained variance (top), the number of

(standard deviation) across elderly subjects is greater at high
(140 steps/min) and low (40, 60 steps/min) cadences. This
is also true for young subjects but only at a low frequency.
It could be surmised that young subjects are more likely to
be able to cope with high walking speeds, while the elderly
subjects’ performance depends strongly on physical condition.
The high variability at lower and higher cadences suggests that
diagnostic experiments on locomotion should be performed at
cadences between 80 and 120 steps/min.

The results presented are in accordance to those obtained
in the previous work which analyzes these data [16]. Monaco
et al. extracted a fixed number of synergies (five) from all the
datasets, as suggested by Ivanenko et al. [10] and adopted three
metrics to assess the effect of cadence and age on synergies,
namely (i) the scalar product of the weight coefficient vectors
after factorization and normalization with respect to their own
norms, (ii) the Pearson correlation coefficient and (iii) the
phase lag between factors (i.e. temporal offset). They showed
that the synergies extracted at slower cadences (40 and 60
steps/min) correlated poorly to those extracted at the reference
speed of 100 steps/min, had more variable phase-lags (reduced
to zero with increasing speed) and had lower similarity. They

ambiguous IC replicates (middle) and the average Iq (bottom) while varying
the model order m from 2 to 12 on the Testing dataset.

also showed that the correlation of some synergies between
the groups was significantly higher at faster cadences, whereas
when cadence decreased, primitive signals related to the young
and elderly were less correlated with each other.

The criteria to determine the number of synergies presented
in this work, though not always conclusive, may also be
valuable in conjunction with other methods and approaches
(e.g. d’Avella et al. [4]) to determine the number of synergies.
Further work in this direction is desirable, in fact determining
the optimal number of factors can bring further information on
the underlying walking processes as it gives evidence on the
complexity of the walking pattern of a subject which may be
linked to neural plasticity [18]. It is reasonable to suppose that
the number of synergies reflects the walking patterns physio-
logical variability, which may be different across subjects and
conditions. Fixing an a-priori number of factors [10] could
impair results as low-power components may be contaminated
by noise.



On a different note, the results of this work may be
also relevant to the scientific community as they suggest that
different preprocessing methods can considerably alter final
results: the number of factors is not significantly altered by age
or by cadence but is considerably reduced by processing. The
reduction of number of synergies brought about by filtering
suggests caution in rectifying, filtering, averaging over one gait
cycle and time-interpolating data [10].

Despite the promising results, the proposed criteria require
an extensive validation and finer tuning on different simulated
datasets with various types of noise and datasets. Future works
will also aim at extending ErpICASSO to other widely used
MF techniques such as NMF and FA.
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