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Abstract: This paper presents a gait phase detection algorithm for providing feedback in

walking with a robotic prosthesis. The algorithm utilizes the output signals of a wearable

wireless sensory system incorporating sensorized shoe insoles and inertial measurement

units attached to body segments. The principle of detecting transitions between gait

phases is based on heuristic threshold rules, dividing a steady-state walking stride into four

phases. For the evaluation of the algorithm, experiments with three amputees, walking

with the robotic prosthesis and wearable sensors, were performed. Results show a high

rate of successful detection for all four phases (the average success rate across all subjects

>90%). A comparison of the proposed method to an off-line trained algorithm using hidden

Markov models reveals a similar performance achieved without the need for learning dataset

acquisition and previous model training.

Keywords: wearable sensory system; inertial sensors; instrumented insoles; gait phase

detection; robotic prosthesis
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1. Introduction

Prostheses efficiently replace a lost limb after amputation. Lower-limb prostheses enable the recovery

of functional movements in the everyday life of an amputee, such as standing up, walking and stair

climbing. Technically, lower-limb prostheses have evolved from simple passive walking aids, attached

to a stump, to complex devices that incorporate damping mechanisms, microprocessor control and also

actuators, together aiming at achieving symmetrical, stable and more energy-efficient motion.

The state-of-the-art of commercially available prostheses for lower extremities incorporates advanced

design based on lightweight materials and passive components for assuring more human-like walking.

Commercial products enable walking at ground-level at different speeds, while only some of them are

appropriate for slope and stairs negotiation. Users report many substantial problems with prostheses

usage reducing their quality of life [1,2]. Walking at a higher speed is asymmetrical [3], while the energy

expenditure increases [4]. For performing step-over-step stair climbing, slope ascending or standing-up

from a seated position, the prosthesis should be capable of contributing to the lifting forces. However,

powered prostheses are still rare on the market, and they are lacking a conceptual control based on human

activity observation.

Several robotic-driven lower-limb prostheses have been developed as research prototypes.

Different configurations employ fully active, or semi-active only knee- [5–8], only ankle-foot- [9–11]

or combined knee-ankle- [12–14] driven joints. Active prostheses are controlled by impedance [6],

finite-state [5,7,8,13,14], echo [15] or myoelectric control [10]. Feedback information is typically

provided to the controller using integrated encoders, sensors measuring the interaction forces, EMG

(electromyography) electrodes or inertial sensors. Common to known approaches is that the robotic

driven joints are operating on the basis of locally assessed information about the current state in

the gait cycle. Sensors are attached directly on the prosthesis or near the interaction points. With

local assessment, the information about human motion dynamics is incomplete. The EU FP7project,

CYBERLEGs (The CYBERnetic LowEr-Limb CoGnitive Ortho-prosthesis), aims at the development of

an active robotic prosthesis for above-knee amputation, controlled by a whole body wearable sensory

system. Whole body awareness promises more precise assessment of the current motion status, thus

enabling richer feedback information and better closed-loop control.

Detection of walking phases is a basic prerequisite for controlling the prosthesis in finite-state mode.

For providing feedback information on the subject’s activity and, at the same time, not restricting tge

subject’s movements in everyday life, the sensors must be wearable and wirelessly connected to an

acquisition unit. Feet interaction force sensors and inertial sensors have proven to be adequate and

reliable for assessing kinetic and kinematic human motion parameters.

Known rule-based phase detection algorithms [16,17] are based on the detection of peaks in acquired

signals, which complicates the usage in online real-time operation. On the other hand, machine

learning methods [18–23] require the acquisition of data and model training in advance, thus posing

an inconvenient requirement for clinical and home environments. Phase detection algorithms running

in real time have been developed; however, only a few specific events of a walking stride, like initial

contact and heel off, were detected [16,18,24,25]. Real-time threshold-based detection of initial contact

using wearable sensors was experimentally evaluated by Hanlon et al. [18] on 12 healthy subjects. The
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performance of a threshold-based algorithm using footswitch sensors turned out to be more accurate than

local peak detection in signals acquired from an accelerometer sensor. With gyroscope usage, over a 98%

success rate was achieved for the detection of initial contact and foot off events by Catalfamo et al. [24],

evaluated on seven healthy subjects. Algorithms based on hidden Markov models are a common

approach for gait segmentation [19,20]. With wearable shoe insoles, a high average success rate (96%)

for walking phase detection was achieved by Crea et al. [23] using hidden Markov models (HMMs)

evaluated on five healthy subjects. With a multisensory shoe system, Bamberg et al. [25] detected the

heel strike and toe off timing accurately during healthy and pathological gait. With the implementation

of accelerometers, gyroscopes, force sensors, dynamic pressure sensors, bidirectional bend sensors and

electric field height sensors on subjects’ walking shoes, they were able to estimate the foot orientation

and position without interfering with human motion. Papas et al. [26–28] developed a simple phase

detection algorithm, dividing the walking stride into four parts: heel off, swing, heel strike and stance

phases. Three force sensitive resistors and a gyroscope were implemented in the shoe, not taking into

account the kinematics of other body segments. Evaluation experiments in combination with functional

electrical stimulation outlined the lack of wireless communication between sensors and the controller

as inconvenient.

This paper presents an algorithm for real-time stride cycle phase detection utilizing a whole body

wireless wearable sensory system. In the methodology, the algorithm is formulated as a state machine

with threshold-based transition rules. The experimental evaluation involving amputees walking with

a robotic prosthesis is described. Phase detection performance is compared to an alternative approach

using hidden Markov models. The main objective of the paper is to present a proof of concept for closing

the loop with humans and the robot and sensory technology currently being developed in a real scenario.

2. Methodology

2.1. Walking Phases

Gait is the most common and also one of the most complex human activities [29,30]. The ground-level

walking cycle is presented in Figure 1. Quiet standing is a starting pose for bipedal locomotion. The

walking maneuver begins with gait initiation. Gait can be initiated by either the left or the right leg,

followed by steady-state cycles of steps. During a steady-state gait, the single and double stance phases

alternate until gait termination occurs, followed by quiet standing. The single stance period occurs when

only one leg is in contact with the ground, while the double stance period is present when this is valid

for both legs. Left to right (L-R) double stance occurs after the left single stance phase, and right to left

(R-L) double stance occurs after the right single stance phase. Phase durations vary with the speed of

walking: the faster the walking, the shorter the double stance phases are.

Control of the robotic prosthesis requires the identification of particular phases in real time. The state

diagram for prosthesis control consists of four main states, with the walking maneuver further divided

into four phases. In Figure 1, the states are marked with numbers and the transitions with letters.
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Figure 1. The state diagram of the intention detection algorithm and prosthetic control.
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2.2. Wearable Sensors

The wearable sensory system for providing input information to the phase detection algorithm consists

of two wireless pressure-sensitive shoe insoles and seven inertial measurement units (IMUs) attached to

human body segments, as presented in Figure 2.

Figure 2. The experimental setup: the amputee is walking between parallel bars with a

robotic prosthesis and wearing wearable sensors.
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The instrumented shoe insoles, developed at Scuola Superiore Sant’Anna, Pisa, Italy [31–33], consist

of 64 pressure cells, each with electronics for signal conditioning and wireless data transmission. Each

cell is made of a silicone-covered opto-electronic pressure sensor, which outputs the electrical signal with

regard to the occlusion of the light path. An unamplified analog voltage signal is acquired by on-board

electronics and is proportional to the deformation on the cell, due to the applied load. The instrumented
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insole can replace a regular insole in normal sneaker shoes of EU size 42–44 and does not interfere with

the normal gait pattern. A receiver unit acquires data from two insoles via the Bluetooth communication

protocol. Insoles are powered by an on-board battery and output computed feet reaction forces and load

distribution expressed as the center of pressure.

Inertial measurement units (IMUs) have been developed to measure the orientation of body

segments [34,35]. The units are small (30 × 20 × 5 mm), lightweight (6 g) and can be attached to

body segments unobtrusively. IMU-based measurement of kinematic parameters is not restricted to a

certain measurement field and can be used to collect data on the movements of multiple segments. The

inertial and magnetic measurement system consists of 7 inertial measurement units. Each IMU contains

miniature MEMS (micro-electromechanical systems) sensors, including a 3D accelerometer (range:

±2 g), a 3D gyroscope (range: ±500◦/s) and a 3D magnetometer (range: ±1.3 G), as well as an on-board

8-bit processor. All sensors are connected to an inter-integrated circuit (I2C) bus with a maximum data

transfer rate of 222 kb/s. The IMUs utilize the wireless transmission of the data packages to the main

acquisition unit for fetching sensory data, which consists of measured vectors of acceleration, angular

velocity and the heading of the magnetic field. IMUs are calibrated after assembly for axis misalignment

and before experimental trials for determining the magnetometer’s bias, misalignment and gain.

For assessing human motion kinetics and kinematics, a multitude of sensors were used. One insole

was placed under the sound leg and the other under the prosthesis. Six IMUs were attached on leg

segments (thighs, shanks, feet) using soft, elastic straps with silicone lining to prevent slipping. One

IMU was placed near the lumbosacral joint on the back. Raw signals were collected at 100 Hz by the

main acquisition unit and fused by an unscented Kalman filter to determine segment orientations [36,37].

2.3. Initial Dataset Acquisition

In order to acquire an initial dataset from the sensory system and to gain knowledge on

walking characteristics, preliminary tests on healthy subjects were performed. Five healthy subjects

(27.7 ± 5.0 years old, 171.3 ± 5.2 cm in height, 70.8 ± 3.5 kg in weight) were instrumented with the

wearable sensory system and instructed to walk along a 10 m-long straight pathway at their preferable

speed. From the acquired dataset of raw sensory signals, the most descriptive outputs regarding phase

transitions were chosen for inclusion in the algorithm. The selected sensory signals and their derived

variables are listed in Table 1. Walking phases were manually identified, referring to characteristic

transitions of the chosen signals. We intentionally excluded walking trials with amputees walking with

their own passive prosthesis, since the walking pattern incorporates various compensating moves.

The signals that describe the feet interaction with the ground are the ground reaction forces of the left

(grfL) and right (grfR) foot. The foot load distributions along the longitudinal axis are the position of

the center of pressure of the left (COPyL) and the right (COPyR) foot. The average absolute difference

between both ground reaction forces of the feet for the past 50 samples, describing the temporal lateral

asymmetry, is denoted as grfDiff. Raw signals from the IMU gyroscope on the feet represent the angular

velocity of the left (gyroL) and the right (gyroR) foot in the sagittal plane. Kalman filter output signals,

describing hip and knee joint angles, were summed into a single signal, labeled as sumAng. The signal

corresponds to the amount of flexion of the lower extremities.
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Table 1. Chosen input signals for the transition and phase detection algorithm. The left

column lists signal tags and the right column the corresponding descriptions.

Input Signals Explanation

grfL vertical ground reaction force of the left foot (N)

grfR vertical ground reaction force of the right foot (N)

grfDiff average absolute difference between grfL and grfR in the past 50 samples (N)

COPyL
longitudinal coordinate of the center of pressure for the left foot (starting from the

toes to the heel) (mm)

COPyR
longitudinal coordinate of the center of pressure for the right foot (starting from the

toes to the heel) (mm)

sumAng the sum of all knee and hip angles ( ◦)

gyroL angular velocity of the left foot in the sagittal plane (rad/s)

gyroR angular velocity of the right foot in the sagittal plane (rad/s)

2.4. Transition and Walking Phase Detection Algorithm

Signals, listed in Table 1, represent an input dataset for the transition and phase detection algorithm.

On the identified signals, the thresholds were defined, determining the transitions between states. The

thresholds are collected in Table 2, denoted by the labeled tags. Threshold QSgrf is the value of the

ground reaction force delimiting quiet standing and the motion state. stanceL and stanceR are thresholds

defined also for ground reaction force signals detecting whether the foot is in contact with the ground or

not. Two thresholds are specified for the grfDiff signal to determine transitions between quiet standing

and initiation or termination (init1) and between initiation or termination and the walking maneuver

(init2). Another two thresholds were specified for the center of pressure signals, differentiating between

L-R and R-L double stance phases (midCOP, toeCOP). For the sumAng signal, three different thresholds

were defined for discriminating between quiet standing and initiation (sumAngInit), quiet standing and

termination (sumAngTerm) and double stance states during the walking maneuver (minAng). For foot

angular velocity signals (gyroL, gyroR), two thresholds were defined, one for detecting the minimal

movement of the foot, denoting the transition to the initiation state (minG) and one for detecting the

transition to the walking state (initG). All threshold values were accessible via a specially designed

graphical user interface (GUI) for fine-tuning.

Based on a thorough analysis of the evident transitions in the signals, the combinations of rules

for transition and phase detection were defined (Table 3). For detecting the starting position for

quiet standing, the following conditions must be met. In an upright body posture, the legs should

be extended (sumAng < sumQS), and the ground reaction force must be symmetrically distributed

between both feet (grfDiff < init2). From the termination to the quiet standing state (see Figure 1,

Table 3, transition j), the angular velocities on the feet must be low enough to ensure that both feet

are standing still ((gyroL < minG) AND (gyroR < minG)). The initiation state (transition a) starts with
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the initial flexion of the starting foot (sumAng > sumAngInit) along with the initial lateral asymmetry

in ground reactions ((grfDiff > init1) AND ((grfL < QSgrf) OR (grfL < QSgrf))). For detecting the

termination state (transitions h and i), the opposite situation is required. The body should be near the

upright posture (sumAng < sumAngTerm), both feet must be in contact with the ground ((grfL > QSgrf)

AND (grfL > QSgrf)), ground reactions should be symmetrical (grfDiff < init1) and the feet should be

standing still ((gyroL < termG) AND (gyroR < termG)).

Table 2. Thresholds defined for the input signals from Table 1. The left column consists of

threshold tags and the right column the corresponding descriptions.

Thresholds on

Input Signals
Explanation

QSgrf threshold for grfL and grfR signals determining the quiet standing state

stanceL threshold for the grfL signal determining the left stance phase

stanceR threshold for the grfR signal determining the right stance phase

sumQS threshold for the sumAng signal determining the quiet standing state

init1 threshold for the grfDiff signal determining the initiation state or the termination state

init2 threshold for the grfDiff signal determining the walking state

midCOP
threshold for the COPyL and COPyR signals, determining the double support phases

during the walking state

toeCOP
threshold for the COPyL and COPyR signals, determining the double support phases

during the walking state

sumAngInit threshold for the sumAng signal determining the initiation state

sumAngTerm threshold for the sumAng signal determining the termination state

minAng threshold for the sumAng signal determining the double support phase in the walking state

minG
threshold for the gyroL and gyroR signals determining the minimal movement of the

feet used for the quiet standing state

termG
threshold for the gyroL and gyroR signals determining the termination state of the

feet used for the transition to walking

For steady-state walking, the detection conditions for four phases are determined. The left stance

(transitions c and d) occurs when the left foot is in contact with the ground (grfL > stanceL), while

the right foot is up in the air (grfR < stanceR), flexion in the legs is detected (sumAng > sumAngInit)

and the lateral asymmetry of the reaction forces is high (grfDiff > init1). For the right stance state

(transitions c and f), the conditions are the same, except that the right foot is in contact with the ground

(grfR > stanceR) and the left foot is in the air (grfL < stanceL). Double stance phases are detected after

a single stance, when both feet are touching the ground ((grfL > stanceL) AND (grfR > stanceR)), with

some flexion in the legs remaining (sumAng > minAng). To distinguish between the L-R and the R-L

double stance, the load distribution of the ground reaction force is examined. For the L-R double stance

(transition e), the reaction under the left foot acts primarily under the toes (COPyL < midCOP), while the
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reaction under the right foot acts primarily on the heel (COPyR > toeCOP). For the R-L double stance

phase (transition f), the conditions are the opposite ((COPyL > toeCOP) AND (COPyR < midCOP)).

All the conditions collected in Table 3 form the basis for an expert knowledge rule-based algorithm for

transition and phase detection in walking.

Table 3. The defined conditions for state machine transitions. The left-most column

describes the recognizable states, the second column the specific rule combinations for

achieving transitions (see Tables 1 and 2), the third column the flag number describing the

state (as in Figure 1) and the last column the transition designator, corresponding to the

transitions presented in Figure 1.

State Condition
Flag Transition

Number Designator

Quiet standing

from initiation
(grfDiff < init2) && (sumAng < sumQS) 5 b

Quiet standing

from termination

(grfDiff < init2) && (sumAng < sumQS) &&

&& (abs(gyroL) < minG) && (abs(gyroR) < minG)

5 j

Initiation
(grfDiff > init1) && ((grfL < QSgrf) || (grfR < QSgrf)) &&

6 a
&& (sumAng>sumAngInit)

Termination

(grfDiff < init1) && (grfL > QSgrf) &&

4 h & i&& (grfR > QSgrf) && (sumAng < sumAngTerm) &&

&& (abs(gyroL) < termG) && (abs(gyroR) < termG)

Walking

Left stance
(grfDiff > init1) && (sumAng > sumAngInit) &&

11 c & d
&& (grfL > stanceL) && (grfR < stanceR)

Left-right (grfR > stanceR) && (grfL > stanceL) && (COPyL < midCOP) &&
12 e

double stance && (COPyR > toeCOP) && (sumAng > minAng)

Right stance
(grfDiff > init1) && (sumAng > sumAngInit) &&

13 c & f
&& (grfL < stanceL) && (grfR > stanceR)

Right-left (grfR > stanceR) && (grfL > stanceL) && (COPyL > toeCOP) &&
14 g

double stance && (COPyR < midCOP) && (sumAng < midAng)

For performance comparison, an alternative algorithm encompassing hidden Markov models (HMMs)

was built using supervised learning. The hidden Markov model is a statistical model in which the

modeled system is assumed to be a Markov process with unobservable states and observable outputs

(observations are, in our case, the measured signals). The HMM only characterizes the statistical

properties of the system. The model is defined by the number of states (the more states, the more

complex the model), the number of outputs, the state transition probabilities, the output probabilities

and the initial state probability distribution. For each gait phase, a three-state HMM was trained, using

the same combination of input signals as in the previously described rule-based algorithm. The learning

set was constructed as a set of signal patterns defining particular walking phases. The technique of

maximum likelihood estimation was used to train the model’s state probabilities and output parameters.

For HMM construction, a free online available toolbox developed by Kevin Murphy was used [38].

Phase recognition was evaluated using a window of the current and past 9 samples of the input data. The

likelihood for each phase model was computed, and the maximum of all four likelihoods determined the

walking phase that belonged.
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2.5. Experimental Evaluation

2.5.1. Subjects

Three persons following trans-femoral amputation (loss of lower limb) were recruited for testing

the alpha prototype of the CYBERLEGs prosthesis with closed-loop control and feedback from the

proposed motor intention recognition. All subjects provided consent with involvement in the study, and

the experiments were approved by the governing ethical committee within the research scope of the

project. The criteria for the selection of subjects were that these were persons following a transfemoral

amputation (for any reason) and were of good general health. There were difficulties with recruiting

amputees that were capable and willing to participate in the experiments. According to studies from the

literature, a small sample size of test subjects is sufficient to prove the conceptual functionality of the

tested system [39]. The subject characteristics are presented in Table 4.

Table 4. Test subjects.

Subject Sex Age Weight Height Amputated Limb Socket Type Current Prosthesis Year of Amputation

S1 M 66 58.5 180 Right ISNY C-Leg(Otto Bock) 2003

S2 M 47 63.5 170 Left ISNY Monocentric knee 1982

with hydraulic friction

S3 M 66 59.5 170 Right ISNY Nabtesco 2010

polycentric knee

Weight without prosthesis; ISNY - Icelandic-Swedish-New York above-knee prosthetic sockets.

The subjects (59.7 ± 11.0 years old, 173.3 ± 5.8 cm in height, 60.5 ± 2.65 kg in weight) have had

a traumatic amputation, and all three wore the prosthesis with an ISNY socket.

2.5.2. Measurement Setup

The measurement environment consisted of a walkway with handrails for directing and assuring safety

to the testing subject during the experimental walking trials. The testing subjects wore the CYBERLEGs

alpha-prototype robotic prosthesis [40] and wearable sensory system, encompassing two wireless insoles

and seven inertial measurement units together with the receiver units. Figure 2 shows an amputee in the

measurement environment wearing the robotic prosthesis and sensory system.

The prosthesis incorporates a full torque-enabled active ankle and a passive knee mechanism. The

knee is a spring-loaded mechanism with some pretension, and it stores the negative knee work in

a passive element during walking. It is able to reproduce the knee torque-angle requirements in

steady-state walking via a locking mechanism, thus approximating normal knee behavior. The ankle

is driven by a MACCEPA (The Mechanically Adjustable Compliance and Controllable Equilibrium

Position Actuator) compliance actuator, which is designed according to the benchmark criteria of an

80-kg individual that tends to walk at a normal speed of 1 stride per second. Variable stiffness assures

the achievement of the desired stiffening characteristic.

Sensory signals were acquired via a wireless transmission by two acquisition units and were processed

by a desktop PC running in real time (Mathworks xPC Target). Another PC computer was used as a host

computer for control scheme development, debugging and data fetching.
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The prosthesis was controlled by a National Instruments CompactRIO (Reconfigurable I/O) system

based on a real-time processor with an FPGA (field-programmable gate array) layer, operating as

a finite-state machine controller. The input to the state machine was the phase identifier from the

phase detection algorithm. The controller changed the resistive torque in the knee joint to follow

predefined patterns, synchronized with the stance and swing phase of the gait. Sensory signals fed

to the controller incorporate joint positions, torque estimations and insole loading data. The control

concept was implemented as a rule-based system with the transitions following the identified gait state,

controlling the knee locking, ankle angle and ankle torque.

2.5.3. Experimental Protocol

The experimental protocol required amputees to perform 6 meter-long walks with the closed-loop

controlled prosthesis at their preferred speed and step length. The time for experiments was limited for

each participant. The protocol was planned in a way that the subject could familiarize himself with the

prosthesis and perform from five to ten test walks prior to data recording. This was also an opportunity

for the investigators to fine-tune the subject-specific parameters, based on weight, height and the side of

the prosthetic leg. In Figure 3, the walking phases for a single stride cycle of an amputee are presented.

For comparison among amputees, the phases were determined according to the side of the sound and

prosthetic leg instead of left and right side. Denotation SSs stands for the single stance phase of a sound

leg and SSp for the single stance of a prosthetic leg. DSsp denotes the double stance phase with the

sound leg in the back and the prosthetic leg in the front, while in the double stance denoted by DSps, the

legs are in the opposite position.

Figure 3. Steady-state gait phases of an amputee walking. From left to right: (a) single

stance prosthetic limb (SSp); (b) double stance prosthetic-sound limb (DSps); (c) single

stance sound limb (SSs); and (d) double stance sound prosthetic limb (DSsp).

a) b) c) d)

The phase detection algorithm phases were a direct input for the allowance of transitions in the

finite-state control mechanism of the prosthesis. The finite-state controller allowed only for a full-gait

cycle to be performed or for a termination state (if stopping). If the detected phase was in accordance

with the gait cycle, the control mechanism triggered a state transition; otherwise, it remained in the given

state (control was paused) until the input triggered an allowed transition. However, the phase detection

algorithm was not restricted to the gait cycle series; therefore, it allowed for a gait phase to be skipped if
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not detected, until the next was detected correctly. Once the previously undetected phase was detected,

control of the prosthesis resumed. During paused control, the prosthesis behaved as a passive support

that the amputee had to pull up and bring forward. If the passive transition was successful, the trial

continued; otherwise, the trial was aborted and a new trial conducted. Phases of the whole gait cycle

were noted as not detected.

When sensors are attached to the human body, the subject is required to stand still for at least five

seconds for the initial calculation of the segments’ orientation. The goal was to perform 25 walking

trials with each subject. The first amputee, S1 (subject 1), finished only 15 trials, due to problems with

the prosthesis operation on the first day. Subjects S2 and S3 accomplished 25 walks each. Subject S3

was available for experiments for two consecutive days and thus completed an additional 23 walks.

2.5.4. Data Processing

With a combination of expert knowledge and supervised automated checking of the phase sequence,

the acquired sensory data of the steady-state gait were segmented into single and double stance phases.

The acquired data from all walking trials represented the reference dataset for verification of the

transition and phase detection algorithm. The correctness of the identified phase was verified by checking

the correct phase sequence pattern. The accuracy was evaluated as the success ratio between the number

of correctly recognized phases and the number of all phases of a particular type.

For the alternative approach using HMM, three different sets of data were used to train the

models. First, individual HMMs were trained for each subject using individual data, demonstrating the

intra-subject phase detection performance. Second, models were trained on data encompassing sets of

two subjects excluding the verified one, testing the inter-subject accuracy of phase detection. Third, data

from all three amputees together was used to train an HMM, verifying the generalization capability of

the HMM approach. All data analysis was performed using MATLAB software.

3. Results and Discussion

The presented results demonstrate the performance of the rule-based algorithm for the detection of

walking phases. The number of recorded walking trials for each subject is presented in Table 5. Within

the measured walks, subjects made a certain number of steps via a certain number of walking phases.

Table 5. Number of walks, acquired gait phases and hidden Markov model (HMM) dataset

configuration for each subject (S1, subject 1; S2, subject 2; S3 D1, subject 3, day 1; S3 D2,

subject 3, day 2).

Subject Number of
Number of all Measured

Number of Walks Number of Walks

ID Walks
Gait Phases

for Training HMM for Evaluating HMM
SSs SSp DSsp DSps

S1 15 91 78 78 77 3 12

S2 25 128 115 107 110 3 22

S3 D1 23 129 124 113 116 0 23

S3 D2 25 132 133 117 131 3 22
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The subject IDs are listed in the first column. The number of recorded walks and corresponding gait

phases accomplished by each subject are presented in the second and third column, respectively. The last

two columns describe the amount of data used for training and for evaluating the alternative algorithm

with HMM. The number of datasets used for training HMMs was intentionally left small, mimicking a

real usage situation in which the acquisition of a large dataset prior to usage is not practical.

Figure 4. Typical selected input signals and output of the algorithm for a subject during a

walking trial. In the top right corner, the pattern sequence for a single stride is illustrated

with L for left stance, L-R for left-right double stance, R for right single stance and R-L for

right-left double stance. The phase flag values correspond to the values 11, 12, 13 and 14,

defined in Table 3.
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The detection of walking initiation and termination by the wearable sensory system was thoroughly

evaluated elsewhere [41]. Typical wearable sensory signals and their derivatives (listed in Table 1)

acquired during the experimental walking trial of amputee S2 are shown in Figure 4. The numerical

output of the transition and phase detection rule-based algorithm is shown in the top-most graph,

presenting the corresponding values from Table 3. The graph denoted as vertical ground reaction force

shows the loading of the sensorized insoles, for the right and left foot, separately. The graph below

presents the longitudinal position of the center of pressure under the right and left foot. The graph

marked as ∆GRF50 plots the average absolute difference between the left and right vertical ground

reaction force over a window of the past 50 samples. The second graph from the bottom shows the sum

of lower limb joint angles (hips and knees), while the bottom-most graph shows the angular velocity of

the foot in the ankle’s sagittal plane. All signals are plotted with respect to time. In the top right corner,

the pattern sequence for a single stride is illustrated with L for left stance, L-R for left-right double

stance, R for right single stance and R-L for right-left double stance. The output flag values correspond

to values 11, 12, 13 and 14, as defined in Table 3.

In Table 6, the performance of the rule-based phase detection algorithm is presented. The detection

success ratios are listed in columns for all four walking phases, with denotations corresponding to

Figure 3. In the last column, mean values over all phases are presented.

Table 6. Success rates for the online detection of gait phases using the rule-based algorithm.

Subject ID
SSs SSp DSsp DSps Mean

(%) (%) (%) (%) (%)

S1 92.3 96.2 96.2 96.1 95.2

S2 100 99.1 95.3 99.1 98.4

S3 D1 99.2 99.2 85.8 97.4 95.4

S3 D2 99.2 100 88.9 98.5 96.7

All Subjects 99.7 98.6 91.6 97.8 96.9

The results demonstrate that the achieved overall success rate for all four subjects is over 90%. The

highest achieved average success rate over all subjects is with detection of sound leg single stance phase

SSs, which implies that the loading pattern and kinematic parameters during sound leg usage are similar

to those in healthy subjects. The lowest success rate is outlined for detection of sound-prosthetic double

stance phase DSsp in which the body weight transfer from the sound to the prosthetic side commences.

In this transfer, with the new prosthesis, amputees had to adopt a new pattern. Adaptation can be

observed for subject S3, who participated in measurement trials through two consecutive days. Success

ratios improve from day 1 (D1) to day 2 (D2) for all phases which involve the prosthetic leg (SSp, DSsp,

and DSps) implying higher confidence in walking with the prosthesis.

Table 7 shows results for phase detection using an alternative approach with HMMs. First section

presents the results of intra-subject verification of HMM performance for each particular subject, second

section shows the inter-subject HMM verification results and the last section results for generalized
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HMM usage. Training sets used for verification are listed in the first row and the set construction is

denoted with corresponding subject IDs, where Si denotes ID of currently evaluated subject.

Table 7. Success rates for detection of gait phases using hidden Markov models.

Training Set Si [%] S1 + S2 + S3 − Si [%] S1 + S2 + S3 [%]

Subject ID SSs SSp DSsp DSps SSs SSp DSsp DSps SSs SSp DSsp DSps

S1 93.2 100 100 100 95.9 100 93.6 95.1 94.5 100 100 100

S2 80.6 97.2 100 75.8 98.1 100 95.4 51.6 100 96.8 98.2 94.7

S3 D1 82.4 96.2 83.3 89.1 96.2 97.0 15.8 99.2 95.4 100 76.7 98.3

S3 D2 53.8 100 98.0 99.0 81.1 98.3 25.5 99.0 88.7 99.1 88.2 98.1

All Subjects 76.5 98.1 94.2 90.2 92.7 98.5 52.7 86.5 94.7 99.0 89.3 97.6

For all three variations, the best results for gait phase detection are evident for subject S1, who was

the only one familiar with the prosthesis prior experiments. Due to increased confidence in usage of the

prosthesis a repeatable walking pattern is recognized with high success rate of phase detection (>90%).

Walks of the other two subjects were more insecure with a less consistent pattern, while they also used

trail handles to maintain support and balance. The best performance among the three HMM options,

between 89% and 99%, is demonstrated by the generalized model, S1 + S2 + S3, as it was trained over

the richest amount of training data.

The lowest success rate can be observed in detection of DSps phase in intra-subject HMM verification

for subject S3 during both days. As this subject had a recent amputation (3 years ago) and had problems

walking even with his own prosthesis, the transfer phase DSps was difficult to accomplish for him. From

the results it can be concluded that his transfer pattern was atypical, since success ratios for intra-subject

verification are high (83.3% and 98.0%), drop for generalized model (76.7% and 88.2%) and are low for

inter-subject verification (15.8% and 25.5%). Also, the lowest success ratio for DSps phase is observed

in generalized model and intra-subject verification for all subjects.

Comparing the results of both approaches, the performances of generalized HMM and rule-based

phase detection algorithm are similar. Other two HMMs configurations performed less accurately in at

least one phase recognition. For the generalized model and inter-subject verification the lowest success

ratio is evident for DSps phase, similar to the rule-based algorithm. Also, performance improvement is

demonstrated for both approaches in case of adaptation of subject S3, i.e. success ratios for phases SSp,

DSsp and DSps improve from day 1 to day 2 for S3 intra-subject validation.

The presented performances are affected by disadvantages of wearable sensors usage. Signals from

the sensory system are noisy in nature, while additional filtering imposes delay in phase detection.

Sensors must be placed on the body segments in a way that its axes are aligned with segments’ sagittal

plane. In practice, this alignment is approximate. For exact alignment an additional calibration procedure

would need to be accomplished after sensors’ placement. Due to muscle contractions and extensions,

the transformation between the segment and the sensor axes constantly changes within a limited range.

The deterioration was comprehended by tuning the initial threshold parameters of the algorithm for each

subject prior to use. As the main limitation of our study we recognize the evaluation with a small number
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of testing subjects, as this presented a compromise between complexity of the experiment and the size

of testing set. Namely, the study focuses on proving the concept of a simple real-time phase detection

method in a real case scenario with three amputee subjects. However, a follow-up clinical study is

planned in the future, incorporating improved sensory hardware and recognition in additional tasks of

human locomotion in order to statistically describe the system performance within larger subject set.

4. Conclusions

We developed a rule-based gait phase detection algorithm based on signals from the wearable wireless

sensory system. The algorithm was evaluated for walking of three amputees wearing a robotic prosthesis

controlled by a finite-state controller, in which the state transitions and the joint trajectory generations

were driven by phase detection. The proposed approach was compared to an alternative algorithm

using HMMs.

The outlined results demonstrate that the wearable phase detection in walking with the robotic

prosthesis can be performed with average success rate across all subjects higher then 90% for all phases

and that its employment in closed loop control of the prosthesis is functional. The proposed algorithm is

computationally simple and consists of 18 heuristic rules for checking, which enables the implementation

on a wearable microcontroller and real-time operation. The achieved performances in phase detection of

the rule-based algorithm are comparable to the alternative HMM approach. Main concept is proven to

be useful in real scenario, although evaluation on larger sample size is needed in the future. We also plan

to expand the algorithm for other motion maneuvers such as stair climbing and stand-to-sit maneuver.

The presented algorithm embodies a white box approach enabling easy implementation. A simple

structure with evidently defined rules and tunable thresholds allows quick adaptation to the user.

The major advantage over machine learning methods is that the measurement walking trials for data

acquisition and manual pattern segmentation prior usage are not needed.
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23. Crea, S.; de Rossi, S.; Donati, M.; Reberšek, P.; Novak, D.; Vitiello, N.; Lenzi, T.; Podobnik,

J.; Munih, M.; Carrozza, M. Development of Gait Segmentation Methods for Wearable Foot

Pressure Sensors. In Proceedings of the 2012 Annual International Conference of the IEEE

Engineering in Medicine and Biology Society, San Diego, CA, USA, 28 August–1 September

2012; pp. 5018–5021.

24. Catalfamo, P.; Ghoussayni, S.; Ewins, D. Gait event detection on level ground and incline walking

using a rate gyroscope. Sensors 2010, 10, 5683–5702.

25. Bamberg, S.; Benbasat, A.Y.; Scarborough, D.M.; Krebs, D.E.; Paradiso, J.A. Gait analysis using

a shoe-integrated wireless sensor system. IEEE Trans. Inf. Technol. Biomed. 2008, 12, 413–423.

26. Pappas, I.P.; Popovic, M.R.; Keller, T.; Dietz, V.; Morari, M. A reliable gait phase detection system.

IEEE Trans. Neural Syst. Rehabil. Eng. 2001, 9, 113–125.



Sensors 2014, 14 2793

27. Pappas, I.; Keller, T.; Mangold, S. A Reliable, Gyroscope Based Gait Phase Detection Sensor

Embedded in a Shoe Insole. In Proceedings of the 2002 IEEE Sensors, Orlando, FL, USA, 12–14

June 2002; Volume 2, pp. 1085–1088.

28. Pappas, I.; Keller, T.; Mangold, S.; Popovic, M.; Dietz, V.; Morari, M. A reliable gyroscope-based

gait-phase detection sensor embedded in a shoe insole. IEEE Sens. J. 2004, 4, 268–274.

29. Winter, D.A. Biomechanics and Motor Control of Human Movement; Wiley: Berlin, Germany,

2009.

30. Whittle, M.W. Gait Analysis: An Introduction; Butterworth-Heinemann: Edinburgh, NY, USA,

2003.

31. De Rossi, S.; Lenzi, T.; Vitiello, N.; Donati, M.; Persichetti, A.; Giovacchini, F.; Vecchi, F.;

Carrozza, M. Development of an In-Shoe Pressure-Sensitive Device for Gait Analysis. In

Proceedings of the 2011 Annual International Conference of the IEEE Engineering in Medicine

and Biology Society, Boston, MA, USA, 30 August–3 September 2011; pp. 5637–5640.

32. Donati, M.; Vitiello, N.; de Rossi, S.M.M.; Lenzi, T.; Crea, S.; Persichetti, A.; Giovacchini, F.;

Koopman, B.; Podobnik, J.; Munih, M.; et al. A flexible sensor technology for the distributed

measurement of interaction pressure. Sensors 2013, 13, 1021–1045.

33. Crea, S.; Donati, M.; de Rossi, S.M.M.; Oddo, C.M.; Vitiello, N. A wireless flexible sensorized

insole for gait analysis. Sensors 2014, 14, 1073–1093.

34. Beravs, T.; Rebersek, P.; Novak, D.; Podobnik, J.; Munih, M. Development and Validation of a

Wearable Inertial Measurement System for Use with Lower Limb Exoskeletons. In Proceedings

of the 2011 11th IEEE-RAS International Conference on Humanoid Robots (Humanoids), Bled,

Slovenia, 26–28 October 2011; pp. 212–217.

35. Beravs, T.; Podobnik, J.; Munih, M. Three-axial accelerometer calibration using Kalman filter

covariance matrix for online estimation of optimal sensor orientation. IEEE Trans. Instrum. Meas.

2012, 61, 2501–2511.

36. Julier, S.J.; Uhlmann, J.K. New Extension of the Kalman Filter to Nonlinear Systems. In

Proceedings of the 1997 International Society for Optics and Photonics, San Diego, CA, USA,

30 July–1 August 1997; pp. 182–193.

37. Wan, E.A.; van der Merwe, R. The Unscented Kalman Filter for Nonlinear Estimation. In

Proceedings of the IEEE 2000 Adaptive Systems for Signal Processing, Communications, and

Control Symposium, Lake Louise, AB, Canada, 1–4 October 2000; pp. 153–158.

38. Murphy, K. Hidden Markov Model (HMM) Toolbox for Matlab, 1998. Available online:

http://www.cs.ubc.ca/ murphyk/Software/HMM/hmm.html (accessed on 20 September 2013).

39. Kordower, J.H.; Freeman, T.B.; Snow, B.J.; Vingerhoets, F.J.; Mufson, E.J.; Sanberg, P.R.;

Hauser, R.A.; Smith, D.A.; Nauert, G.M.; Perl, D.P.; et al. Neuropathological evidence of graft

survival and striatal reinnervation after the transplantation of fetal mesencephalic tissue in a patient

with Parkinson’s disease. N. Engl. J. Med. 1995, 332, 1118–1124.

40. Geeroms, J.; Flynn, L.; Jimenez-Fabian, R.; Vanderborght, B.; Lefeber, D. Ankle-Knee Prosthesis

with Powered Ankle and Energy Transfer for CYBERLEGs α-Prototype. In Proceedings of the

2013 IEEE International Conference on Rehabilitation Robotics, Seattle, WA, USA, 24–26 June

2013; pp. 1–6.



Sensors 2014, 14 2794
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