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Abstract—Estimating the temporal derivatives of a noisy position signal
is a ubiquitous problem in industrial and robotics engineering. Here, we
propose a new approach to get velocity and acceleration estimates of
cyclical/periodic signals near to steady-state regime, by using adaptive
oscillators. Our method combines the advantages of introducing no delay,
and filtering out the high-frequency noise. We expect this method to be
useful in control applications requiring undelayed but smooth estimates of
velocity and acceleration (e.g. velocity control, inverse dynamics) of quasi-
periodic tasks (e.g. active vibration compensation, robot locomotion,
lower-limb movement assistance).

Index Terms—Oscillator, Filtering, Kinematics, Learning and Adaptive
Systems, Calibration and Identification

I. INTRODUCTION

Digital encoders are commonly used in industrial and robotics
applications to measure angular positions. However their position
accuracy is limited by the quantized position measurement, i.e. the
number of slits on the encoder disk surface, and the actual regularity
of the space between two consecutive slits. This is equivalent to
assume that the actual position is polluted by random (white) noise
in the measurement.

On top of that, many applications require a good estimate of the
signal temporal derivatives, i.e. velocity (e.g. for feedback control
[1]) and acceleration (e.g. for inverse dynamic compensation [2]).
An approach is to use specific sensors to get these estimates, e.g.
tachometers for velocity and accelerometers for acceleration. This
however increases the cost and encumbrance of the device, while
the signal processing becomes challenging [3]. The alternative is to
infer velocity and acceleration from the position reading. The most
naive approach is to do direct differentiation of the raw position
signal, but this brings very noisy signals, due to the amplification of
quantization errors by time-differentiation [3], [4]. Therefore, smart
signal processing techniques have to be used, such that an abundant
literature has been produced on that topic [3]–[17].

In this paper, we propose a novel approach to estimate the velocity
and acceleration (and potentially higher-order derivatives) of a noisy
measured position signal by using adaptive oscillators. Adaptive
oscillators are tools developed by Righetti et al. [18], [19] for various
applications [20]: signal processing (as an alternative to wavelet
to perform time-varying frequency analysis), dynamical systems
(construction of limit cycles of arbitrary shape) and robotics (e.g.
adaptive control of compliant robots [21]). More recently, we paved
the way for a new application field for adaptive oscillators, namely in
human-robot interactions, including movement assistance [22]–[26]
and predictive control [27], [28]. The main property of an adaptive
oscillator refers to its capacity to synchronize to an input signal while
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learning its features (frequency and amplitude/envelope) in dedicated
state variables. As such, estimates of temporal derivatives can be
obtained from analytical expressions of the estimated signal envelope.
This approach is thus specifically tailored for cyclical/periodic signals
close to steady-state regime, but combines the nice advantages of
filtering out the measurement noise (through the dynamics of the
adaptive oscillator) and providing estimates which are, on average,
phase-synchronized (i.e. delay-free) with respect to the actual tempo-
ral derivatives [19]. This is a critical difference between this approach
and classical low-pass filtering, which unavoidably introduces delay.

In the next section, we briefly review the literature on signal
derivative estimation. Thereafter, we present our approach and com-
pare it to the most widely used techniques in classical applications,
namely Kalman filtering and polynomial interpolation. A preliminary
version of the method presented here with an application to robot-
aided walking assistance has recently been accepted to a conference
[29]. The original contributions of the present paper are to refine
the theoretical developments, to provide quantified comparisons of
our approach with respect to the state-of-the-art by using benchmark
signals, and to provide the theory for the synthesis of an adaptive
oscillator, i.e. to tune its gains to achieve a desired bandwidth in
feature estimation (see the appendix).

II. STATE-OF-THE-ART

Existing methods for estimating the time derivatives of an encoder
signal fall in two categories, depending whether a model of the system
dynamics is available or not. Model-based approaches require a full
dynamic model of the system in order to combine the system’s inputs
and outputs with dynamic predictions. Typical approaches include
model-based Kalman filters [16], neural networks [11] or other
nonlinear methods [6], [7]. Model-based approaches can provide
accurate estimates of derivatives, but are strongly context-dependent,
such that their performances significantly rely on the accuracy of the
process model.

Model-free methods, conversely, do not make use of dynamic
models of the system, and only rely on data processing algorithms. In
the rest of this paper, we will focus on this category of estimators. The
naive way to obtain a velocity estimate of an input signal is through a
digital, filtered derivative estimation. This approach suffers from the
well-know trade-off between bandwidth and smoothness [17]: The
smoother the estimate, the higher the time (or phase) delay introduced
by the filter. Most non-naive approaches can be divided into three
main categories [4]: (i) Predictive post-filtering techniques, (ii) linear
state space observers, and (iii) indirect methods interpolating the data
before performing an exact (continuous) derivative evaluation.

Predictive post-filtering techniques perform filtering on the numeri-
cally differentiated signal. Most common approaches are summarized
in [8] and include Taylor series expansion, backwards difference
expansion, and least squares fitting. All these techniques provide a
predictive filtering of the past signal, and then estimate the signal
slope based on its derivative. A more recent approach using adaptive
windowing was proposed in [10] and showed to be superior to
traditional filtering techniques. Importantly, these techniques were
developed to get a delay-free estimate of the first derivative only
(i.e. velocity), and are therefore not further described in this paper.

State space observers use a linear, time-invariant model as a
representation of data and its derivatives. The most common of these
approaches is the model-free linear Kalman filter technique [3]. In this
case, the process is modeled as a noise-driven chain of n integrators:
Ẋ(t) = AX(t) + Γξ(t), y(t) = CX(t) + e(t), where:

A =

(
0n−1×1 In−1

0 01×n−1

)
, Γ =

(
0n−1×1

1

)
,
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and C = (1 01×n−1), with 0n×m being a n × m zero matrix,
In being the square identity matrix of size n, and ξ(t) being white
noise, modeling the variability of the last integrator. Finally, e(t)
models the encoder’s quantization and measurement noise, affecting
the measured output y(t), i.e. the position. An observer of this system
is constructed as:

˙̂
X(t) = AX̂(t) +K

(
y(t)− CX̂(t)

)
, (1)

where K is the vector of the observer gains, whose optimal value is
given by Kalman theory. In sum, this approach provides an estimate
of the position and its (n − 1) first derivatives by using a n-
equations system, the variability of the intrinsic noise ξ(t) being
the sole open parameter. Practically the estimate of the i-th order
temporal derivative is given by the (i + 1)-th state variable. A
more recent implementation, based on an extended Kalman filter
taking the encoder quantization into account, was proposed in [30].
Other state-space techniques were proposed in [9], [14], [15]. The
approach proposed by [12] is also worth being mentioned, because
it specifically targets periodic signals. It is however practically more
difficult to implement than the method presented here, due to the
large number of open parameters, requiring a partial knowledge of
the input frequency content.

Finally, indirect methods are based on the approximation of the
signal using interpolation, and analytical derivation of this inter-
polation to get the derivative estimates. Polynomial interpolation
approaches were first presented in [5], and were further developed
based on either fixed-time or fixed-position algorithms. Fixed-position
algorithms require a very accurate clock and therefore typically more
expensive hardware. Fixed-time polynomial interpolation consists in
interpolating the n last encoder positions xk (sampled at time tk) by
a polynomial of order m. This is achieved by solving an equation
like YkPk = Xk, where:

Yk =


tmk−n+1 tm−1

k−n+1 . . . 1

...
...

...

tmk−1 tm−1
k−1 . . . 1

tmk tm−1
k . . . 1

 ,

Xk = (xk−n+1 . . . xk−1 xk)T , and Pk = (pm pm−1 . . . p0)T is the
coefficient vector, to be determined. If n > m, the problem is over-
determined and can be solved using the least squares method, i.e.
P = (Y TY )−1Y TX . Estimates of the signal’s time derivatives are
obtained by differentiating the estimate x̂k. For example an estimate
of the velocity can be obtained from:

ˆ̇xk =

m∑
i=1

ipit
i−1
k . (2)

Recently, new techniques to skip some recorded encoder events were
proposed to increase the precision of the estimate in fixed-position
algorithms (e.g. [4]), for estimation of both velocity and acceleration.

III. ADAPTIVE OSCILLATORS

The central element of the estimation method presented in this
paper is an adaptive oscillator [18], [19]; i.e. a dynamical system
having the capacity to synchronize to a (quasi)-periodic input by
learning its features in dedicated state variables. Let’s start with
the simplest case, i.e. assuming the reference input θr(t) to be a
sinusoidal signal:

θr(t) = αr sin (φr(t)), (3)

φ̇r(t) = ωr(t),

where αr , φr , and ωr are the amplitude, phase, and frequency (i.e. the
features) of the reference input. An adaptive oscillator for such input
is thus a dynamical system whose state variables (namely phase φ,
frequency ω, and amplitude α) converge to the corresponding input’s
ones, and whose output θ̂(t) = α sin (φ(t)) gets synchronized to the
reference input (3). The simplest system achieving this behavior is
an augmented phase oscillator:

φ̇(t) = ω(t) + νφ
F (t)

α(t)
cosφ(t),

ω̇(t) = νω
F (t)

α(t)
cosφ(t), (4)

α̇(t) = ηF (t) sinφ(t),

where νφ, νω , and η are the learning gains determining the speed
of phase synchronization to the error signal F (t) = θr(t)− θ̂(t). A
method for doing the synthesis of this oscillator, i.e. to tune these
gains to achieve desired performances in learning the features, is
provided in the appendix. Note that in (4), the oscillator frequency
is a state variable learning the frequency of the error signal F (t),
instead of doing mere synchronization only. As such, the oscillator
has the capacity to constantly adapt its features as a function of the
error signal, and to keep these features in memory, i.e. in the state
variables. Righetti et al. provided the proof of convergence of ω(t)
toward a stationary frequency for a similar adaptive oscillator as the
one presented here [18], while [19] provided further results with time-
varying parameters.

Now, if the reference input is periodic but no longer sinusoidal,
the same authors further proposed to put several oscillators in parallel
in a feedback loop (see the upper part of Fig. 1) to learn the input
features (i.e. the frequency spectrum) [31]. Indeed, if the input signal
is periodic (such that all frequencies with a non-zero power spectrum
are multiple of a fundamental harmonic), an estimate can be derived
from its Fourier decomposition:

θ̂(t) =

K∑
i=0

αi sin (φi(t)) =

K∑
i=0

αi sin (iωt+ ϕi), (5)

where K denotes the number of harmonics kept in the estimate.
Righetti et al. [31] established the convergence of θ̂(t) to θ(t)
by copying the former oscillator for the learning of each of the
harmonics:

φ̇i(t) = iω(t) + νφ
F (t)∑
i
αi(t)

cosφi(t),

ω̇(t) = νω
F (t)∑
i
αi(t)

cosφ1(t), (6)

α̇i(t) = ηF (t) sinφi(t).

Note that in (6), the 0-th oscillator (i = 0) is a simple integrator
(assuming φ0(0) = π/2) learning the signal offset, i.e. α̇0(t) =
ηF (t). From (6), it is visible that steady-state is reached when F (t) =
0, i.e. when θ̂(t) = θ(t). If θ(t) is only quasi-stationary — i.e. if
the input features (frequency, amplitudes, phases) slowly vary in time
— θ̂(t) will be a low-pass filtered version of θ(t). Indeed, random
noise affecting the input θ(t) will be filtered out by the dynamics of
the adaptive oscillator (6). Importantly, θ̂(t) and θ(t) will however
be phase-synchronized on average [19].

If the estimated features (namely ω, αi, ϕi) converged to the
actual ones, an estimate of the input’s derivatives can be obtained
by differentiating (5), i.e.:

d̂jθ

dtj
(t) =

K∑
i=1

αi(t)(iω(t))j sin
(
φi(t) + j

π

2

)
. (7)
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Fig. 1. On-line learning of a periodic but non-sinusoidal input signal θ(t).
The upper block is a pool of adaptive oscillators (6), decomposing the input
into a real-time Fourier series. The lower block is a kernel-based non-linear
filter, mapping the phase of the main harmonic φ1(t) to the input envelope.
Adapted from [32]

Again in steady-state (i.e. if the features are stationary and the
estimations converged), these filtered estimates are undelayed with
respect to the actual ones, in contrast to more classical low-pass filter-
based approaches like Kalman filtering.

In [22], [23], [25], we used this approach to estimate the velocity
and acceleration of human quasi-sinusoidal elbow movements —
i.e. by limiting (5) and (7) to the first harmonic (K = 1) — and
to provide robot-aided movement assistance based on an inverse
dynamic model.

IV. KERNEL-BASED FILTER

If the input signal θ(t) possesses a large frequency spectrum,
like for instance if it contains a plateau of quasi-constant position,
the estimated signal θ̂(t) can only merely approximate the original
one, since the learned signal will be truncated to a finite number of
harmonics K. Moreover, this approximation error grows up with the
successive time derivatives, which amplify high frequencies, each by
a factor ω (see (7)).

To solve this limitation by keeping K reasonably low, we propose
to augment the structure of the learning algorithm with a second
block, working in the time (or phase) domain [32]. The approach is
described in Figure 1. The pool of adaptive oscillators is used only
to extract the phase of the input signal. i.e. φ1(t). This phase is used
afterwards as the input of a non-linear filter working in the phase
domain.

This filter actually solves a supervised learning problem, where the
signal to be learned is approximated as a sum of local models, i.e.:

θ̂?(t) =

∑N

i=1
Ψ(ϕi(t))wi∑N

i=1
Ψ(ϕi(t))

, (8)

where ϕi(t) = φ(t) − ci, and Ψ(ϕ) = exp (h(cosϕ− 1)) is
a Gaussian-like kernel functions. The parameter h determines the
kernel width, and ci = c̄+i2π/N the center of the N kernel functions
being summed (equally spaced between 0 and 2π in N steps). These
kernel functions are represented by the dotted gray curves in Figure 1.
Locally weighted regression corresponds to finding the weight vector

wi which minimizes a quadratic error criterion. Following [32], [33],
an on-line version of this learning process can be implemented using
incremental regression to determine the weights wi. This relies on
recursive least squares with a forgetting factor of λ, determining the
learning dynamics. Given the input θ(t), wi is updated by:

wi(tk+1) = wi(tk) + Ψ(ϕi(tk))Pi(tk+1) (θ(tk)− wi(tk)) ,

Pi(tk+1) =
1

λ

(
Pi(tk)− Pi(tk)2

λ
Ψ(ϕi(tk))

+ Pi(tk)

)
, (9)

where the tk’s are the discrete time steps, and P is the inverse
covariance matrix [34]. If λ < 1, the regression gives more weight
to recent data.

An estimate of the temporal derivatives of θ(t) can again be
obtained by differentiating equation (8). The first derivative gives:

ˆ̇
θ?(t) = ω(t)

(∑
Ψ′(ϕi(t))wi∑

Ψ(ϕi(t))
−
∑

Ψ′(ϕi(t))
∑

Ψ(ϕi(t))wi(∑
Ψ(ϕi(t))

)2 )
, (10)

where
∑

stands for
∑N

i=1
and the kernel derivative Ψ′ is given by:

Ψ′(ϕ) =
dΨ

dϕ
= −Ψ(ϕ)h sinϕ. (11)

The second term of (10) is proportional to
∑

Ψ′. This sum can be
viewed as an approximation of the integral of its argument by the
midpoint method. Interestingly, the analytical expression of the error
due this approximation can be found in any standard textbook of
numerical methods. It is equal to:

N∑
i=1

Ψ′(ϕi) =
N

2π

N∑
i=1

(∫ ϕi+
π
N

ϕi− π
N

Ψ′(ϕ)dϕ− (2π)3

24N3
Ψ′′′(σi)

)

=
N

2π

∫ 2π

0

Ψ′(ϕ)dϕ− (2π)2

24N2

N∑
i=1

Ψ′′′(σi)

=
N

2π
(Ψ(2π)−Ψ(0))− (2π)2

24N2

N∑
i=1

Ψ′′′(σi),

where
[
ϕi − π

N
≤ σi ≤ ϕi + π

N

]
. The first term is equal to 0 since

Ψ(ϕ) is a 2π-periodic function. The second term can be made
arbitrarily small since it can be showed that:∣∣Ψ′′′(ϕ)

∣∣ ≤ min (3h+ 1, h2 + 1.25).

Therefore, by choosing the number of kernels N large enough and
the kernel width wide enough (i.e. h small enough), the second term
of (10) can be neglected with respect to the first one. Then (10)
simply reduces to:

ˆ̇
θ?(t) = ω(t)

∑
Ψ′(ϕi(t))wi∑

Ψ(ϕi(t))
,

i.e. to a weighted sum of the derivatives of each local kernel.
Similarly, estimates of temporal derivatives of any order j can be
obtained from:

d̂jθ?
dtj

(t) = ωj(t)

∑ djΨ(ϕi(t))

dϕj
wi∑

Ψ(ϕi(t))
, (12)

if the system is at steady-state, i.e. if ω̇(t) = 0

For acceleration, the second derivative of the local kernel is
obtained from (11):

Ψ′′(ϕ) = −Ψ′(ϕ)h sinϕ−Ψ(ϕ)h cosϕ. (13)
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Fig. 2. Benchmark signals (position/velocity/acceleration) used to evaluate
the filter performances. Left: a simple sinusoidal signal; right: almost square
wave with continuous first, second, and third order derivatives

V. TESTS WITH BENCHMARK SIGNALS

To evaluate the method efficiency and compare it to the most stan-
dard existing methods, we tested it on benchmark signals for which
an analytical expression of the position, velocity, and acceleration
can be derived. Two signals were selected, the first having a narrow
frequency spectrum, the second having a wide one:

1) A simple sinusoidal signal, such that θ(t) = αr sin (ωrt),
θ̇(t) = αrωr cos (ωrt), and θ̈(t) = −αrω2

r sin (ωrt), with
αr = 0.35 and ωr = 2π/T .

2) A square wave, with smooth transients such that the signal is
continuous up to the third order derivative:

• for 0 ≤ t̄ < 0.1, ascending slope: θ(t) =∑7

i=0
qit̄

i, θ̇(t) = 1/T
∑6

i=0
(i + 1)qi+1t̄

i, and θ̈(t) =

1/T 2
∑5

i=0
(i+ 2)(i+ 1)qi+2t̄

i;
• for 0.1 ≤ t̄ < 0.5, plateau: θ(t) = −q0, θ̇(t) = θ̈(t) = 0;
• for 0.5 ≤ t̄ < 0.6, descending slope: same expressions as

in the first case, multiplying the qi by −1;
• and for 0.6 ≤ t̄ < 1, plateau: θ(t) = q0, θ̇(t) = θ̈(t) = 0;

with q0 = −0.257, q1 = q2 = q3 = 0, q4 = 18, q5 = −43.2,
q6 = 36, q7 = −10.3, and t̄ = mod(t/T, 1) denotes the
normalized time.

These signals are shown in Figure 2, over 2 periods. Both have the
same period T = 1/ωr = 1.25s, the same mean (θ(t) = 0) and
standard deviation (std(θ(t)) = 0.248). The figure also shows the

velocity and acceleration profiles. The second signal (“square”) has
larger acceleration peaks, due to a widest frequency spectrum.

To simulate realistic experimental conditions, these two signals
were sampled at 100Hz, and corrupted by a random noise of standard
deviation equal to 0.0124 (5% of the signal standard deviation, giving
rise to a signal-to-noise ratio equal to 20). Four different estimation
methods, all being fixed-time, were tested on these two signals:

1) A Kalman filter (1), designed as explained in Section II, with
n = 3 and the variability of ξ(t) being equal to the standard
deviation of the signal’s third order derivative (jerk);

2) a filter based on polynomial interpolation (see (2) and Section
II), with a polynomial of degree m = 2 (parabola), and a buffer
size equal to n = 10;

3) AdOsc: a pool of adaptive oscillators (Equations (6) were
discretized by using finite difference), with the gains tuned from
(16), (17), and (18) (see appendix) to get desired frequency and
amplitude learning time constants equal to τω = 1.25s = T
and τα = 3.5s = 2.8T . Estimates were computed from (7).

4) AdOsc+NLF: a pool of adaptive oscillators (6) with the gains
tuned to get τω = τα = 3.5s = 2.8T , coupled with a non-
linear filter (9). A slower frequency time constant τω as in
the ’AdOsc’ was selected, to comply with the non-linear filter
own dynamics. The filter parameters were set to λ = 0.9985,
N = 90, and h = 90. Estimates were obtained from (12).

The number of oscillators K was chosen large enough to capture the
rich frequency spectrum of the square wave. In the ’AdOsc’ case,
we selected K as being equal to the number of harmonics having a
Fourier transform larger than 1% of the main harmonic, i.e. K = 8
in the case of the square wave. In the ’AdOsc+NLF’ case, we raised
the threshold at 15% of the main harmonic, i.e. K = 3 in the case
of the square wave. Indeed, less oscillators were required since the
signal envelope was learned by the non-linear filter. All methods
were implemented in MATLAB (the MatWorks, Natick, MA), using
dedicated functions when appropriate (e.g. kalman for the Kalman
filter design and polyfit for the polynomial interpolation).

The estimated accelerations with these four methods are shown in
Figure 3, over a representative cycle (1.25s) of steady-state regime.
Position and velocity estimates are not shown since they were hardly
distinguishable from each other. Since the Kalman filter and the
filter based on polynomial interpolation are low-pass filters, they
introduced a delay in the signal. As a consequence, the estimations lag
behind the actual signals. This is mainly visible for the acceleration.
Moreover, the filter based on polynomial interpolation was the nois-
iest estimator, mainly if the input had a narrow frequency spectrum

Fig. 3. Estimated acceleration of the benchmark signals over a representative cycle. Top: simple sinusoidal signal; Bottom: almost square wave with continuous
first, second, and third order derivatives. The actual acceleration is shown in black, and the estimates obtained with the different methods in gray: Kalman
filter (leftmost), polynomial interpolation (middle left), adaptive oscillators only (middle right), and adaptive oscillators + non-linear filter (rightmost)
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Fig. 4. Knee kinematics (position/velocity/acceleration) used to evaluate the filter performances. The actual reference signals are shown in gray, and the
estimates obtained using different methods in color: Kalman filter (green), adaptive oscillators (dotted blue), and adaptive oscillators + non-linear filter (red)

TABLE I
RESULTS OF THE ESTIMATES OF THE BENCHMARK SIGNALS

Kalman poly AdOsc AdOsc
+NLF

SINUSOIDAL

Vel. error [a.u./s] 0.303 0.405 0.030 0.030
correlation 0.990 0.929 1.000 1.000

Acc. error [a.u./s2] 4.12 8.73 0.87 1.56
correlation 0.730 0.486 0.984 0.956

CPU time [a.u.] 0.03 14.17 1.64 2.13
SQUARE

Vel. error [a.u./s] 1.312 1.067 0.787 0.450
correlation 0.699 0.805 0.892 0.929

Acc. error [a.u./s2] 56.5 50.4 40.8 23.6
correlation -0.258 -0.218 0.596 0.813

CPU time [a.u.] 0.03 14.11 1.52 2.01

a.u.: arbitrary unit

(small velocity/acceleration). The pool of adaptive oscillators behaved
very well when the input had a narrow frequency spectrum (sinusoidal
signal), the behavior resulting from a perfect synchronization with the
input. However, when the input spectrum was wider, the loss of the
> K harmonics resulted in the well-known Gibbs phenomenon, i.e.
small oscillations during the plateaued epochs. This was improved
by adding a non-linear filter in the time-domain (AdOsc+NLF). Note
that all methods underestimated the acceleration peaks for the square
signal.

To further quantify these results, we computed the average absolute
error between the estimated and actual signals, i.e. ‖ • (t)− •̂(t)‖;
and their correlation, for the velocity and acceleration of both
benchmarks. The results are given in Table I.

As already pointed out, the pool of adaptive oscillators provided
the best estimates when the input spectrum was narrow, while the
addition of the non-linear kernel filter proved to be effective when
the input spectrum was wider. The method based on polynomial inter-
polation provided noisy estimates, mainly for high order derivatives,
and when the velocity was low [3]. Note that the delay caused both
by the Kalman filter and the polynomial filter caused the acceleration
correlation to be negative (the estimated positive peak was sync to

the actual negative peak) for the square signal. Table I also gives
the computation time required for each method. The polynomial
filter had the poorest computational efficiency, since it required the
largest amount of basic operations. In contrast, the Kalman filter was
very cheap (it basically required two matrix multiplications and one
addition each time step). The new proposed method was in between,
with a factor < 100 with respect to Kalman filter when the non-linear
filter was added.

VI. TEST WITH A REAL “PERIODIC” SIGNAL

We further put our method to test using a real signal, corresponding
to the kinematics of the right knee during a walking task on a
treadmill (data published in [26]). This signal was acquired by the
encoder of the LOPES training device [35], [36], in a condition where
the LOPES was controlled to provide some assistance to the hips. The
main interest in this test is to check the method accuracy for a signal
that is not stationary. Therefore, we computed the same metrics as
for the benchmark signals, but focusing on epochs were the treadmill
speed changed, forcing the walker to change the gait cadence. In this
case, the reference signal used for derivatives was obtained through
a zero-phase forward-backward filtered differentiation (Butterworth,
3-rd order, 10 Hz).

Figure 4 shows the estimation results during a representative 8s
epoch (including a treadmill speed transient around t = 3s). For
the sake of clarity, we did not show the results obtained with the
polynomial filter, since the tests with the benchmarks signals showed
its performance to be equal or lower than the Kalman filter, with a
higher computational cost. Similar conclusions as for the benchmark
signals can be emphasized: (i) all filters performed equally well on the
position signal, except maybe the one based on the pool of adaptive
oscillators only (AdOsc) which had difficulties to capture abrupt
transients (with a rich frequency spectrum); (ii) the Kalman filter
was noisier, and introduced a delay (mainly visible in the acceleration
peak); and (iii) the non-linear filter mainly served to capture the high
frequency components (the plateaus were more flat as with the two
other methods) and to adapt more rapidly to a frequency change.

Figure 5 shows the actual instantaneous movement frequency (the
inverse of the cycle duration, multiplied by 2π) of the same data as
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Fig. 5. Estimated movement instantaneous frequency ω(t) (6). Dotted
blue: adaptive oscillators only ’AdOsc’; red: adaptive oscillators + non-linear
filter ’AdOsc+NLF’. Gray dots represent an off-line estimate of the actual
instantaneous frequency

TABLE II
RESULTS OF THE ESTIMATES OF THE KNEE KINEMATICS

Kalman AdOsc AdOsc
+NLF

Vel. error [rad/s] 0.507 0.317 0.273
correlation 0.965 0.985 0.990

Acc. error [rad/s2] 18.19 8.98 6.89
correlation 0.599 0.918 0.949

CPU time [a.u.] 0.13 6.42 8.58

presented in Figure 4 (same t = 0s, but longer time horizon, for
better readability). It also shows the frequency ω(t) (6) estimated
by AdOsc (τω = 1.25) and AdOsc+NLF (τω = 3.5). It shows that
both provided a very good and reactive estimate of the movement
frequency, in line with the desired time constants.

To further quantify these results, the same table as for the bench-
mark signals is given in Table II. The metrics (errors and correlations)
were computed over a period of 14 minutes, including 6 transitions
between 3 different treadmill speeds. The table confirms the trends
discussed from Figure 4: Better estimations with our method as
with the Kalman filter (mainly for the acceleration), and a small
improvement if the non-linear filter is added, pending a small increase
of the computational cost (by about 25%). The Kalman filter is still
by far the cheapest method regarding the computational cost.

VII. CONCLUSION

The paper provided a new method for getting a real-time estimate
of the temporal derivatives (mainly velocity and acceleration) of noisy
position signals, e.g. obtained through an incremental encoder. This
method works only for cyclical/periodic signals near to steady-state
regime, but has the paramount advantage to provide estimates which
are both filtered (i.e. the high-frequency, noise-driven part of the
signal is filtered out), and delay-free (as opposed to classical low-
pass filters). This is achieved by synchronizing the input signal to a
(pool of) adaptive oscillator(s), whose convergence is proved in [18],
[19]. As such, the signal features (frequency, amplitude/envelope)
are low-pass filtered, rather than the signal itself. If the input signal
has a wide frequency spectrum, the addition of a non-linear kernel
filter in the phase domain proved to be efficient to avoid signal
distortion (Gibbs effect) in the plateaued epochs. This non-linear
filter basically allowed to decrease the number of oscillators (3 vs.
8 in the example above), such that the overall extra computational
payload was marginal. The efficiency of our approach vs. classical
filtering techniques was further illustrated on benchmark and real
(non-stationary) signals.

In conclusion, we expect our method to be useful for applica-
tions requiring accurate and predictive control of (quasi-)periodic
movements, like active vibration compensation [37], and locomotion-
related tasks in robotics, e.g. animaloid and humanoid locomotion,
human locomotion assistance/rehabilitation, etc.. We already paved
the way in this last area, by studying the method mentioned here for
assistance of upper- [22], [23], [25] and lower-limb [29] movements,
and to improve the transparency of a lower-limb exoskeleton [28].

APPENDIX

SYNTHESIS OF THE EXTENDED PHASE OSCILLATOR

In this appendix, we derive the synthesis rules of the simple
extended phase oscillator (4) that was proposed to learn the features
of a sinusoidal input (3) while synchronizing its output to it. More
precisely, this appendix establishes how to tune the oscillator gains,
namely νφ, νω , and η, to make the oscillator amplitude α and
frequency ω converging to the corresponding references (i.e. αr and
ωr) with desired time constants.

In the case of a sinusoidal input and a single adaptive oscillator,
the error signal is equal to

F (t) = θr(t)− θ̂(t) = αr(t) sinφr(t)− α(t) sinφ(t)

= (αr(t)− α(t)) sinφr(t)

+2α(t) sin

(
φr(t)− φ(t)

2

)
cos

(
φr(t) + φ(t)

2

)
.

Now, assuming that the system is close to steady-state, such that
2 sin

(
φr−φ

2

)
' (φr − φ) and cos

(
φr+φ

2

)
' cosφ, (3), (4) can be

written in the following state-space form:

ẋ = A(φ, α)x+Bωωr +Bα(φ, α)αr, (14)

with (explicit time-dependence is withdrawn for clarity) xT =
(φr, φ, ω, α) being the state vector,

A(φ, α) =


0 0 0 0

νφc
2
φ −νφc2φ 1

−νφ
α
sφcφ

νωc
2
φ −νωc2φ 0 −νω

α
sφcφ

ηαsφcφ −ηαsφcφ 0 −ηs2
φ

 ,

BTω = (1, 0, 0, 0), BTα (φ, α) = (0,
νφ
α
sφcφ,

νω
α
sφcφ, ηs

2
φ), sφ =

sinφ, and cφ = cosφ. The system (14) can then be viewed as an
“input-output” system, whose inputs are the reference features (αr
and ωr) and outputs are the estimated ones (α and ω). With constant
inputs, the system time constants can be determined by calculating
the step responses of (14). A few more derivations are required to use
standard tools of linear systems theory to derive an explicit analytical
form of these time constants.

First, we again make the hypothesis that the system stays close
enough to steady-state to assume, for a constant input frequency ωr:
A(φ, α) ' A(φr, αr) = A(ωrt, αr) and Bα(φ, α) ' Bα(φr, αr) =
Bα(ωrt, αr). Then, we rely on the averaging technique [38] to derive
an approximation of the solution of (14) from the solution of its
averaged system:

ẋ = Ā(αr)x+Bωωr + B̄α(αr)αr, (15)

where

Ā(αr) =
1

2π

∫ 2π

0

A(φr, αr)dφr

=


0 0 0 0
νφ
2
− νφ

2
1 0

νω
2
− νω

2
0 0

0 0 0 − η
2

 = Ā,



IEEE TRANSACTIONS ON ROBOTICS, VOL. X, NO. X, MONTH YEAR 7

is the averaged state matrix. Similarly, B̄Tα (αr) = (0, 0, 0, η
2
) =

B̄Tα . This averaged system is thus linear, and its input-output transfer
functions can be derived.

The amplitude transfer function is equal to [39]:

α(s)

αr(s)
= (0, 0, 0, 1)(sI4 − Ā)−1B̄α =

η/2

s+ η/2
.

It has a static gain equal to 1 and a single pole in −η/2. Therefore,
its step response is (1− e−t/τα) with a time constant equal to:

τα = 2/η. (16)

Interestingly, this time constant only depends on η, the larger the
gain, the faster the time constant.

Similarly, the frequency transfer function is equal to:

ω(s)

ωr(s)
= (0, 0, 1, 0)(sI4 − Ā)−1Bω =

νω/2

s2 + νφ/2 + νω/2
.

It also has a static gain equal to 1, this time with two poles. By
choosing:

νφ = 22
√
νω/20 =

√
24.2νω, (17)

this transfer function simplifies to:

ω(s)

ωr(s)
=

νω/2

(s+
√

5νω)(s+
√

0.05νω)

'
√

0.05νω

s+
√

0.05νω
,

because the neglected pole is 10 times faster than the other. Therefore,
its approximated step response is equal to (1− e−t/τω ) with a time
constant equal to:

τω =
√

20/νω. (18)

Again, this time constant only depends on a single gain νω , with a
faster time constant corresponding to a larger gain. Similarly, it can
be established that the two dynamics are entirely decoupled since
α(s)/ωr(s) = ω(s)/αr(s) = 0.

In sum, we established three relationships — namely (16), (17),
and (18) — to tune the gains of (4) in order to achieve the desired time
constants τα and τω in the learning dynamics of the input features.
The following simulations quantify the approximation error due to
the steady-state assumption and averaging.

Figure 6 shows 6 seconds of a simulation of a single adaptive
oscillator (4) receiving a sinusoidal input (black). The gains were
tuned to get τα = τω = 0.5T , where T is the initial cycle
period. Here, T = 2π/ω = 1s. At t = 2, the input frequency
switches from ωr = 2π to ωr = 3π and the input amplitude from
αr = 1 to αr = 1.5, simultaneously. The corresponding oscillator
output and state variables are showed in red. The dotted blue curves
show the solution of the first approximated system (14), assuming
small deviations from steady-state. The magenta curve shows the
solution of the second approximation, i.e. after averaging (15) and
simplifying the fast frequency pole due to (17). These results validate
the proposed synthesis, since both approximation are very close to
the actual output.

We further reproduced this simulation for a large range of desired
time constants and for independent amplitude and frequency steps.
An exponential curve of the form (1 − e−t/τ ) was fit (to the least-
square sense) on the system output to get an estimate of the actual
time constant, and to compute the relative error with respect to the
one predicted by (16) or (18). Figure 7 shows this relative error
for the actual amplitude time constant τα, and for a large range of
desired τα and τω (between 0.2T and 5T ). This relative error is only
marginally dependent on the desired τα (i.e. on η). For τω > 1.5, it is
bounded by 5%. It grows up for smaller desired τω , likely because the

Fig. 6. Simulation results for a single adaptive oscillator subject to a
simultaneous input frequency and amplitude change. Black: input signal; red:
oscillator output and state variables; blue: first approximation (14); magenta:
second approximation, i.e. averaged system (15)

Fig. 7. Relative error (in % of τα) between the desired and the actual time
constant of the ampltiude learning τα, as a function of desired time constants
τα and τω . The oscillators gains were tuned following (16), (17), (18)

close-to-steady-state assumption is no longer valid, and because the
mutual influence between the frequency and amplitude dynamics can
no longer be considered as negligible (as assumed in the averaging).

Results for τω are even better (no shown). The relative error stays
close to −8% as soon as the desired frequency time constant τω is
larger than 0.3. This consistent negative error is likely due to the
influence of the neglected fast pole. Finally, larger relative errors
appear for the frequency time constants for very small gains (i.e.
for large desired time constants τα and τω , typically > 5T ), again
because the simplifying assumptions are no longer valid.

In conclusion, these simulations validate the synthesis rules (16),
(17), and (18) in a large range of desired time constants, typically
0.2T ≤ τα ≤ 5T and 0.2T ≤ τω ≤ 5T .
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