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 

Abstract—Electromyographical (EMG) signals have been 

frequently used to estimate human muscular torques. In the field 

of human-assistive robotics, these methods provide valuable 

information to provide effective support to the user. However, 

their usability is strongly limited by the necessity of complex 

user-dependent and session-dependent calibration procedures, 

which confine their use to the laboratory environment. 

Nonetheless, an accurate estimate of muscle torque could be not 

necessary to provide effective movement assistance to the users. 

The natural ability of human CNS of adapting to external 

disturbances could compensate for a lower accuracy of the 

torque provided by the robot and maintain the movement 

accuracy unaltered, while the effort is reduced. In order to 

explore this possibility, in this paper we study the reaction of 10 

healthy subjects to the assistance provided through a 

proportional EMG control applied by an elbow powered 

exoskeleton. This system gives only a rough estimate of the user 

muscular torque but does not require any specific calibration. 

Experimental results clearly show that subjects adapt almost 

instantaneously to the assistance provided by the robot and can 

reduce their effort while keeping full control of the movement in 

different dynamic conditions (i.e. no alterations of movement 

accuracy are observed). 

 
Index Terms—powered exoskeletons, EMG control, assistive 

robotics. 

I. INTRODUCTION 

OWERED exoskeletons are wearable robots designed to 

assist human movements. The assistance provided by 

these devices can be exploited to several ends: to augment the 

performance of healthy humans, enhancing their endurance 

[1]-[3] or strength [4], to restore normal abilities in patients 

affected by movement disorders, such as tremor [5][6], 

hemiplegia [7][8] or paraplegia [9][10], or finally to enhance 

the outcome of neuro-muscular rehabilitation [11]-[13]. 

Despite the very different goals a common issue arises: the 

design of a human-robot interface capable of understanding 

the intention of the user and reacting appropriately to timely 

provide the required assistance. 

A widely investigated methodology to achieve this goal is 

based on the estimation of the joint torque needed to perform 

 
Manuscript received January 28, 2012.This work was partly supported by 

the EU within the EVRYON Collaborative Project STREP (Evolving 

Morphologies for Human-Robot Symbiotic Interaction, Project FP7-ICT-
2007-3-231451). All authors are with The BioRobotics Institute, Scuola 

Superiore Sant’Anna, viale Rinaldo Piaggio 34, 56025, Pontedera (PI), Italy. 

Tommaso Lenzi is corresponding author. Phone: +39 050 883472; fax: +39 
050 883 497; e-mail: lenzi@ieee.org. 

the movement, and the provision of a constant fraction of said 

torque to the wearer by means of a robot [14][15]. As a result 

of the assistance, users are facilitated in performing the task 

provided that they can adapt their motor behavior in terms of 

muscle activations to exploit the external assisting torque. The 

expected outcome is that, thanks to the robot-mediated 

assistance, the subject can perform the desired task with less 

muscle effort [16], and/or recover the normal movement 

ability and arm strength of a healthy subject [5]. 

A possible strategy for estimating the torque needed to 

perform a movement consists in measuring the activation of 

the involved muscles through electromyography (EMG). EMG 

signals, resulting from the motor neuron impulses that activate 

the muscle fibres, can be correlated with the force produced by 

muscles and the resulting torque at the joint level [19][20]. 

The relation between EMG signals and torque is however very 

complex. It involves several non-linearities in both static and 

dynamic conditions, and strongly depends on the subject 

anatomy and the placement of electrodes. Under controlled 

conditions, the final EMG-torque relationship can be modeled 

by a second order filter with a bandwidth of about 2-3 Hz 

[21][22] with good results. Accordingly, the incipit of EMG 

signal starts about 20-80 ms before the muscle contraction 

takes place [23].  

The main drawback of EMG-based torque estimation 

methods is intrinsic in the complex subject- and session-

dependent calibrations that are required to produce an accurate 

and reliable model. This procedure is time-consuming and 

cannot be done by the subject wearing the exoskeleton alone. 

Furthermore, it often requires supplemental technical 

equipment to be performed. For these reasons, all these 

methods can be hardly applied outside of the laboratory 

environment. 

Compared to model-based methods (i.e. inverse dynamics 

models [19][20]), EMG-based techniques have the advantage 

of not requiring a dynamic model of the limb and of its 

interaction with the environment. This is appealing in a real-

world scenario, when solving inverse dynamic equations and 

measuring interaction forces could be impracticable.  

Different algorithmical approaches have been proposed in 

the past to estimate the muscular torques starting from EMG 

activation, ranging from black-box neural networks [24], 

neuro-fuzzy classifiers [25], and Hill models [26][27]. 

Particular attention was given to reduce the complexity of the 

calibration procedures, lowering, at the same time, the 

required computational power [28]. More recently, combined 
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force-position estimates from EMG have been proposed as a 

method to teleoperate robotic arms and control exoskeletons 

[29][30]. 

Most efforts, however, have been spent to increase the 

accuracy of these methods, which is definitely important in 

biomechanics and physiology, but could be possibly 

unnecessary for providing effective robotic assistance by 

means of an exoskeleton. Moreover, the need for using 

powered exoskeletons in a home environment requires to find 

simplified solutions for the human-robot interface that could 

combine ease of use and effectiveness in assisting the wearer 

movement. Independently of the specific goal of the robot-

mediated assistance (e.g. improve the living independence of 

elderly persons, increase the autonomy of disabled people) the 

use of a wearable robot in daily living should not require the 

need for an external person to be worn, tuned or used. 

With a view to the achievement of this long term objective, 

in this paper we focus on the analysis of the closed-loop 

usability of a simplified EMG-based assistive robotic system. 

The proposed human-robot interface uses EMG signals to 

continuously detect the users’ movement intention (in terms of 

direction and intensity of the muscle effort) and to assist the 

movement execution through a powered exoskeleton. The 

basic idea is to provide users with a torque proportional to 

their muscle-activation intensity, so that each muscle is 

artificially strengthened by the action of the exoskeleton.  

Specifically, we applied an assistive torque proportional to 

the envelope of the EMGs from the main muscles involved in 

the movement and coherent with their action (i.e. agonist-

antagonist role). As already shown in [31] even with a through 

calibration, EMG envelopes can provide only a rough estimate 

of the torque exerted during the movement. Nevertheless, it 

can nicely approximate the muscle activation level and the 

direction of the intended movement (e.g. flexion vs. 

extension).  

We hypothesize that, by giving a robot assistance coherent 

with the intended movement, the CNS ability to adapt and 

exploit external motor disturbances  will allow the person to 

compensate for the torque estimate imprecision, and still 

benefit (in terms of reduced muscular effort) from the robot 

assistance while keeping full control of the movement. In 

addition, in order to simulate a plausible real-world situation 

we avoid any kind of calibration of the system, and leave the 

freedom of choosing the gain between EMG envelope and 

robot-provided torque to the subjects.  

To test the proposed controller, we setup a demanding 

elbow flexion-extension task, with a pace and amplitude 

imposed by the experimenter through a metronome and a 

visual feedback. It is our interest not only to reduce the effort 

of the users (i.e. their muscle activations) but also to verify 

that the normal movement accuracy is maintained.  

Our results support this hypothesis by showing that subjects 

can adapt almost instantaneously to the assistance provided by 

the exoskeleton by reducing their muscle effort while 

maintaining the joint trajectory unaltered. 

This paper presents the description of the EMG-based 

proportional control system along with its implementation on 

the NEUROExos platform, a powered exoskeleton for the 

elbow assistance. The proposed assistive control was tested on 

ten healthy subjects performing an elbow flexion/extension 

movement against gravity (i.e. in non-isometric, non-isotonic 

muscle contraction conditions). Results of the experiments 

along with discussion are reported. Preliminary results were 

submitted to a conference [32]. 

II. METHODS 

A. The NEUROExos platform 

Assistance to the elbow joint was provided through the 

elbow powered exoskeleton NEUROExos, (see [33][34] for an 

extensive description) – shown in Fig. 1 – designed to provide 

high fidelity torque to the user joint.  

User’s upper- and lower-arm were rigidly connected to the 

robot through orthotic shells, designed to improve comfort and 

to minimize peak pressures on the skin [35][36]. NEUROExos 

is powered by two remote antagonist actuators (i.e. a flexor 

and an extensor) mimicking the function and configuration of 

human muscles [37][38]. The platform is equipped with a 

4096 ppr rotary encoder and with two cable force sensors. 

Each antagonist actuator is controlled by an independent 

closed-loop force control having a bandwidth of 11 Hz. The 

force controllers can be synchronized to achieve the desired 

torque at the joint level. The lower-arm link of NEUROExos 

has inertia of only 0.007 Kgm
2
. The mechanical impedance in 

zero-torque control is about 2Nm/rad, ensuring a good 

transparency of the robot.  

 

Fig. 2 Block diagram of the proportional EMG controller. 

 

Fig. 1 Overview of a subject wearing the NEUROExos elbow exoskeleton 

during experimental session 
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B. EMG Processing and proportional controller 

Surface EMG activity from the biceps brachii and triceps 

brachii (long head) muscle were picked up by pre-gelled 

Ag/AgCl 8 mm diameter bipolar surface electrodes 

(Pirronse&Co., Italy) attached 2 cm apart along the 

longitudinal axis of the muscle belly. EMG recordings were 

digitized at 1 kHz using the Telemyo 2400R G2 analog output 

receiver (Noraxon USA Inc., AZ, USA) with an internal band-

pass filter (10-500 Hz) and a gain coefficient of 2000. Raw 

EMG signals were processed to obtain the linear envelope 

(LE) profiles, which are known to resemble the muscle tension 

waveforms during dynamic changes of isometric forces [39]. 

LEs were obtained on-line through full-wave rectification of 

band-passed EMG signals and post-filtering by means of a 

second-order low-pass Butterworth filter with a 3 Hz cut-off 

frequency [40]. This value has been chosen by considering 

previous studies about muscle contraction dynamics [19] and 

pilot trials on our platform. 

As showed in the NEUROExos control scheme (see Fig. 2), 

LEs recorded from biceps and triceps (i.e. LEbic and LEtric) 

were multiplied by two different constant factors Kbic and Ktric, 

to obtain the force set-points for the NEUROExos flexor and 

extensor actuator respectively (      and      ). Cable forces 

(     and     ) were regulated by the NEUROExos closed-

loop low-level controller to produce the final assistive torque 

on the user joint. EMG recordings, together with kinematic 

and force data from the exoskeleton were synchronized and 

saved by means of a Labview® routine running at 1 kHz on a 

real-time controller NI PXI-8196 (National Instrument, TX, 

USA). 

C. Experimental Procedures 

Ten healthy right-handed volunteer subjects took part to the 

experiment (age 23-34, four female, six male). No subject had 

previously experienced EMG control on the exoskeleton. All 

participants signed an informed consent before the experiment 

took place. 

Subjects sat on a chair and wore the NEUROExos on their 

right arm. The weight of NEUROExos was supported by an 

external frame, which also constrained the upper arm to an 

inclination of about 30 deg with respect to the gravity vector, 

as shown in Fig. 1.  

Before starting the experimental procedure, the subject 

chose the two preferred gains of the proportional controllers 

(Kbic and Ktric), one after the other, starting from the biceps. 

Both gain values were initially set to 0. The subject was 

instructed to increase the gain gradually using a knob while 

moving his/her right elbow freely. The experimenter exhorted 

the subjects to increase the gain as long as they felt 

comfortable with the level of assistance. No time constraint 

was given for this operation, but in no case more than 2 

minutes were needed. After the preferred gain values were 

chosen, subjects took rest for 5 minutes outside the 

exoskeleton before starting the experimental procedure.  

During the experiment, participants were asked to make 

cyclical flexion/extension movements with a target amplitude 

and pace supplied by the computer. Augmented visual 

feedback was provided to subjects using a computer screen, 

showing current elbow angle through a vertical cursor and 

target movement range with upper and lower limits. In 

addition, a metronome supplied the desired movement pace to 

which the user was asked to synchronize. The goal was to 

execute a full cycle of the required movement within two 

consecutive beeps. The exoskeleton did not react in any way 

to errors in movement pace or amplitude performed by the 

user. Therefore subjects were in full control of the movement, 

and experienced no constraints. 

The experiment included three different trials that tested the 

adaptation of the subjects to the proposed controller under 

different movement conditions and increasing levels of 

assistance. The protocol of each trial is hereafter reported: 

Trial 1) Hand-free movement at a constant pace. 

Participants were asked to perform flexion/extension 

movement with a target pace of 1Hz. While performing 

this cyclical movement, subjects experienced three 

increasing level of assistance obtained by setting the force 

gain values (Kbic and Ktric) to 50%, 100% and 150% of the 

preferred values previously chosen (see panel A of Fig. 3). 

Each level of assistance was maintained for one minute, 

and was interleaved by 1 minute of no-assistance condition 

(Kbic and Ktric equal to 0) in order to wash out potential 

adaptation effects. Trial 1 therefore consisted of seven one-

minute sequences, resulting in seven minutes of continuous 

cyclical movement. 

Trial 2) Weight-lifting at constant pace.  

Participants repeated the protocol of the first trial while 

holding a 1 Kg weight dumbbell with their right hand for 

the whole duration of the trial.  

Trial 3) Hand-free movement at variable pace.  

Participants were asked to execute a cyclical 

flexion/extension movement at a constant pace. Every 60 

seconds the movement target pace was changed according 

to the following sequence: 1Hz, 0.75Hz, 1Hz, 1.25Hz, 1Hz 

(see panel A of Fig. 5). This procedure was performed two 

times at different assistance level, interleaved by two 

minutes of rest. During the first session, Kbic and Ktric were 

equal to 100% the preferred values; in the second, Kbic and 

Ktric were set to 0 (i.e., no assistance) to obtain the 

reference performance of the subject.  

In all trials, reference amplitude and offset were kept constant 

at 25° (i.e. total elbow excursion equals to 50°) and 70° 

respectively. Subjects performed the three trials one after 

another, interleaved by 10-minutes resting periods outside the 

exoskeleton. Each trial was iterated two times to verify the 

familiarization of subject to the proposed controller and to 

assess longer term adaptation [41]. 

D. Data Analysis 

In order to analyze the movement kinematics the angular 

position was filtered (first order Butterworth with 25Hz cut-

off frequency) and differentiated twice to get the angular 

velocity and acceleration. These variables, together with all 

the raw data acquired during the experiment (i.e. joint angle, 

EMGs, LEs, Forces, Torque) were divided into sequences of 

60 seconds with (1) homogeneous levels of assistance (50%, 

100% and 150%) and (2) constant target pace. Each of these 
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sequences was separated in individual cycles using a peak 

detection algorithm on the angular position signal. Cycles 

during which a transition occurred were not included in the 

analysis. Within each cycle, we computed cycle amplitude 

(difference between the maximum and the minimum), cycle 

duration and EMGs integral (IEMG). Finally, IEMGs were 

normalized for each subject and each muscle separately, by 

using the average IEMG computed on the cycles of the 1 Hz 

sequences in no-assistance condition. This allows comparing 

IEMGs of different subjects.  

Given that a non-constant number of full-movement cycles 

were performed within each 60-seconds sequence, we kept the 

data corresponding to the first and last 20 cycles for the 

analysis of the transitory and stationary behavior respectively. 

In the followings, statistics were calculated on stationary 

behavior only. 

Preliminary statistical tests (N-way repeated measures 

ANOVA) revealed that the effect of the iteration (i.e. the 

repetition of identical trials by the same subject) was not 

significant for all the above mentioned dependent variables 

(i.e. cycle amplitude and duration, IEMG). Both the main-

effect and the interaction with the other factors never reached 

significance (all p’s >0.32). For this reason, the two iterations 

of the same trial were pooled together in the subsequent 

statistical tests and figures.  

Trial 1 and Trial 2 were analyzed using two-way repeated 

measures ANOVA (mixed design) with subject ID as 

between-subject factor and assistance level as within-subject 

factor. On the other hand, three-way repeated measures 

ANOVA (mixed design) was used to examine the results of 

trial 3, by using subject ID as between-subject factor, level of 

assistance and target movement pace as within-subject factors. 

When required, post-hoc comparison were tested by means of 

Tukey HSD method and displayed through confidence 

intervals. 

The reason of using subject ID as a factor is that subjects 

chose the preferred gain values autonomously, leading to a 

subject-dependent level of assistance. As a consequence, it 

was of interest to test the effect of that choice on the kinematic 

performances and on the muscular activations (i.e., the 

dependent variables of the analysis). 

All data processing was performed by using Matlab (The 

MathWorks, Natick, MA, USA). Statistics tests were 

computed via SPSS (IBM SPSS, Somer, NY, USA) by setting 

the significance level at an alpha value of 0.05. 

III. RESULTS 

A. Kinematic performance 

The analysis of the kinematic performance was aimed at 

investigating how subjects adapted to the extra-torque 

 
Fig. 4 Kinematic and dynamic variables averaged across all subjects 

and repetitions for Trial 1 (free movement). Data is shown for the 

first and last 20 cycles for each condition (solid line), along with the 

standard error contour (shadowed) and the mean value (black line). 

From top to bottom: relative gain value (A), cycle amplitude (B), 

cycle duration (C), normalized biceps integral (D), average torque 

(E). 

 
Fig. 3 Kinematic and dynamic variables averaged across all subjects 

and repetitions for Trial 2 (weight-lifting movement). Data is shown 

for the first and last 20 cycles for each condition (solid line), along 

with the standard error contour (shadowed) and the mean value 

(black line). From top to bottom: relative gain value (A), cycle 

amplitude (B), cycle duration (C), normalized biceps integral (D), 

average torque (E). 
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provided by the robot. Specifically it aimed to test if subjects 

could fulfill the required rhythmic tasks despite the simplified 

assistive controller experienced in the three trials.  

As mentioned earlier, we extracted the amplitude and 

duration of each cycle. The average of these variables across 

all the subjects along with standard errors are shown in panel 

B and C of Fig 3, Fig. 4 and Fig. 5, which report the results of 

trial 1, 2 and 3 respectively. These figures show two important 

results. First, by looking at the stationary phases (last 20 

cycles of each sequence) it is clear that subjects could fulfill 

the required motor tasks (in terms of movement range and 

pace) no matter the level of assistance provided, the extra-

weight to be lifted, or the difference in target movement pace. 

On the other hand, visual inspection of the transitory phases 

(first 20 cycles of each sequence in Fig. 3 and Fig. 4) 

highlighted that subjects adapted almost instantaneously to 

changes in the assistance level. The movement amplitude 

increased for one cycle after the gain change, but was quickly 

recovered within 3 to 5 cycles. Similarly, the cycle duration 

decreased on the first cycle after the transition occurred, then 

it returned to its stationary level within 3 to 5 cycles. Also, 

results from trial 3 demonstrated that subjects could adjust the 

movement pace almost instantaneously, even when the 

assistance was active. Subjects showed to adapt to the new 

pace by modifying the cycle duration within 3 to 5 cycles after 

the transition occurred, as shown in panel C of Fig. 5, after the 

vertical dotted vertical line. Notably, no difference in 

adaptation to the new pace was evident between no-assistance 

and the assisted condition (i.e. differences between blue and 

magenta lines are indeed hardly visible in panel C of Fig. 5) 

Mean position, velocity and acceleration profiles in stationary 

state were also calculated for each assistance level, and are 

reported in Fig. 6 (panel A, B and C) with different colors, for 

a single representative subject. It can be seen that the 

movement kinematics was not altered by the assistance 

provided by the exoskeleton.  

ANOVA on the stationary performance for all the three 

trials revealed that the movement duration was not affected by 

any of the tested factor (see Table I and Fig. 7). All p’s are 

indeed greater than 0.74. On the contrary, significant 

differences existed in the movement range if subject-ID factor 

is considered (p<10
-6

), meaning that subjects tended to 

perform slightly different movement ranges, even though 

these differences were very small (about 2°). Importantly, the 

movement amplitude was not affected by the gain-level factor 

in any trial (all p’s >0.059) as can be seen by the confidence 

interval reported on Fig. 7. This result confirms that the 

proposed assistive controller did not modify the ability of the 

subjects to control the high level features of the movement 

(e.g. pace, amplitude). 

B. Effort reduction 

To prove the effectiveness of the proposed assistive strategy 

in lowering the effort spent by the wearer, we computed the 

EMG integral (IEMG), which is recognized to be one of the 

best measures of the total muscular effort. [42]. Being the 

elbow movement performed against gravity, triceps muscle 

was not significantly activated during the trials. (i.e. the max 

activation of the triceps within a movement cycle was always 

under three times the standard deviation of the corresponding 

EMG signal at rest) As a consequence the results in the 

followings are reported for biceps only. 

The visual inspection of IEMG on trial 1 (see panel D of 

 
Fig. 5 Kinematic and dynamic variables averaged across all 

subjects and repetitions for Trial 3. Data is shown for the first and 

last 20 cycles for each condition (solid line), along with the 

standard error contour (shadowed) and the mean value (black line). 

Results obtained using different gains are reported in different 

colors. From top to bottom: target movement pace (A), cycle 

amplitude (B), cycle duration (C), normalized biceps integral (D), 

and average torque (E). 

 
Fig. 6 Steady-state profiles of position (A), velocity (B), acceleration 

(C) and biceps linear envelope (D) for one representative subject. 

These profiles were obtained by resampling the actual trajectories 

over 1000 equally spaced samples for each cycle, then averaging on 

the steady-state cycles of each gain separately. 



> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 

 

6 

Fig. 3) outlines that the muscular effort at the stationary state 

was strongly dependent on the level of assistance provided by 

the robot. Specifically, when K was set to 50%, 100% and 

150% of the subject-preferred value, we observed a IEMG 

reduction of 13.02%, 23.14%, 31.34% respectively (see Fig. 

7), compared to the no-assistance condition (K = 0). 

Coherently, the mean torque over the cycle increased with the 

level of assistance, indicating that an extra flexion torque is 

provided during the trial (see panel E of Fig. 3 and panel A of 

Fig. 7). 

As shown in panel D of Fig. 4, analogous results were 

obtained in trial 2, when subjects lifted a 1 Kg dumb-bell. In 

that case, we recorded a reduction on the IEMG of 10.5%, 

20.65% and 28.47% (compared to the no-assistance condition 

with extra-weight) for the same three increasing proportional 

gains (50%, 100% and 150% of the preferred value). Despite 

the similar percentage IEMG reduction between trial 1 and 

trial 2, the comparison among panel D of Fig 3 and Fig 4 

revealed that the effort was approximately doubled in trial 2 

because of the additional weight. As a consequence, the joint 

torque increased as well (see panel E, Fig.3 and Fig.4)  

Focusing on the transient phases of both trial 1 and trial 2 

(first 20 cycles of each sequence panel D, Fig. 3 and Fig. 4), it 

is clear that subjects adapted their muscle activations very fast 

to compensate for the extra-torque provided by the robot. In 

agreement with the cycle amplitude, the IEMG decreased 

rapidly after the gain shift, and achieved its stationary level 

within 3 to 5 movement cycles. 

The mean profiles of the biceps envelope were also 

calculated for each assistance level and are represented with 

different colors in panel D of Fig 6, for a single representative 

subject. It can be seen that the assistive controller did not alter 

significantly the shape of the LE profiles along the movement 

cycle, while it reduced considerably the effort of the user. 

Higher proportional gains led to lower LE profiles. 

The ANOVA analysis on the stationary state established the 

statistical significance of the main effect of the gain level 

factor on both biceps IEMG and joint torque for trial 1 and 

trial 2 (all p’s < 10
-6

, see Table 1). Post-hoc tests (Tukey HSD) 

in the IEMG revealed a significant difference between all the 

different assistance conditions (i.e. gain levels) that we tested 

(see Fig. 7 for the pairwise comparison of ANOVA results). In 

addition, a significant interaction was present between the 

subject ID and the gain-level (all p’s<10
-6

), pointing out that 

not only each participant tended to choose a different level of 

assistance by setting the preferred K values, but also that this 

choice affected the capability of adapting to the assistance and 

then to save effort. 

Similar analysis was performed on the results of trial 3. The 

cycle by cycle evolution of biceps IEMG and joint torque 

during this trial are reported in panel D and E of Fig 5; where 

the results for the no-assistance condition are superimposed to 

the one obtained at the preferred assistance level. Again, the 

most evident effect of the assistance controller is a marked 

decrease in the IEMG that is observed for any tested 

movement pace, as reported on the different sequences in Fig. 

5. Not surprisingly, the movement pace affected 

proportionally the IEMG: the higher the pace the higher the 

effort. The ANOVA analysis pointed out the statistical 

significance of the observed difference in IEMG and joint 

torque for both the main effect of assistance level, target pace 

and subject-ID factors (all p’s < 10
-6

). Post-hoc tests (Tukey 

Table I 

ANOVA results for trials 1, 2 and 3. In red are highlighted the statistically significant results. 

 Amplitude [°] Duration [s] IEMG Torque [Nm] 

Trial 1 

Subject ID 
F(9,190) = 

56.732 

p<10-6 F(9,190) = 

0.654 

p = 0.7496 F(9,190) = 

18.906 

p <10-6 F(9,190) = 

451.714 

p <10-6 

Gain level 
F(3,570) = 

2.5354 

p = 0.0559 F(3,570) = 

1.481 

p = 0.2186 F(3,570) = 

631.288 

p <10-6 F(3,570) = 

7343.25 

p <10-6 

Subject ID * 

 Gain level 

F(27,570) = 

1.233 

p = 0.1951 F(27,570) = 

1.310 

p = 0.1373 F(27,570) 

=11.690 

p <10-6 F(27,570) 

=66.364 

p <10-6 

Trial 2 

Subject ID 
F(9,190) = 
61.975 

p <10-6 F(9,190) = 
0.926 

p = 0.5036 F(9,190) = 

18.906 

p <10-6 F(9,190) = 

18.906 

p <10-6 

Gain level 
F(3,570) = 

2.381 

p = 0.0686 F(3,570) = 

2.432 

p = 0.0641 F(3,570) = 

631.288 

p <10-6 F(3,570) = 

631.288 

p <10-6 

Subject ID * 

 Gain level 

F(27,570) 

=1.124 

p = 0.3047 F(27,570) 

=1.055 

p = 0.3905 F(27,570) 

=1.310 

p <10-6 F(27,570) 

=11.690 

p <10-6 

Trial 3 

Subject ID 
F(9,190) = 

236.73 

p <10-6 F(9,190) = 

0.473 

p = 0.8914 F(9,190) = 

105.867 

p <10-6 F(9,190) = 

709.683 

p <10-6 

Gain level 
F(1,190) =  

3.575 

p = 0.061 F(1,190) = 

1.124 

p = 0.2904 F(1,190) = 

1006.390 

p <10-6 F(1,190) = 

29105.7 

p <10-6 

Target frequency 
F(2,380) = 
2.344 

p =0.0973 F(2,380) =  
11841.753 

p <10-4 F(2,380) = 
424.751 

p <10-6 F(2,380) = 
332.087 

p <10-6 

Subject ID *  

Gain level 

F(9,190) = 

1.356 

p = 0.2108 F(9,190) = 

0.203 

p = 0.9936 F(9,190) =  

47.536 

p <10-5 F(9,190) = 

811.389 

p <10-6 

Gain level *  

Target frequency 

F(2,380) = 

0.963 

p = 0.3826 F(2,380) = 

0.094 

p = 0.9103 F(2,380) = 

10.073 

p <10-3 F(2,380) = 

162.900 

p <10-6 
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HSD) in the IEMG and mean torque revealed a significant 

difference between the two assistance conditions (i.e. gain 

levels) and the three frequencies that we tested (see Fig. 7). 

Again, the interaction between gain-level and subject-ID was 

significant (p<10
-5

). Significance was also reached by the 

interaction between gain-level and target frequency (p< 10
-3

). 

IV. DISCUSSION 

A. Evidences from the experimental results 

The experimental results shown in the last section clearly 

demonstrate that subjects could keep the full control of their 

arm movement during the action of the EMG-proportional 

assistive controller. Movement kinematics was not 

significantly altered in any tested condition. With the EMG 

assistance on, participants successfully performed the 

rhythmic task also in the presence of an additional weight (Fig 

5), with no need of changing the gains. Moreover, subjects 

could change the movement pace as required by the 

experimental protocol of task 3 (Fig. 6). 

In all tested conditions participants could reduce the effort 

spent to move the arm, as shown by the considerable biceps 

IEMGs drop off. This result is remarkable if we consider the 

well-known difficulties of EMG-based control in assisting 

movements that require very low muscular effort [25], and 

consequently produce low EMG signals, such as the 

unconstrained elbow movement that we tested in trial 1.  

Motor adaptation to novel dynamical environments has 

been widely investigated in the past by applying force/torque 

to the subjects’ upper and lower limbs through pre-

programmed robots (see e.g. [43]-[45]). This study provides 

further experimental results on this topic, with a disturbance 

modulated by users themselves through muscular activations, 

rather than being pre-programmed [46] or dependent on the 

movement kinematics [47]. Because of the EMG proportional 

control, the re-modulation of the muscles’ activation had a 

twofold effect. On one side it showed that users adapted (i.e. 

reduced) the muscular torque to preserve the intended 

movement in the presence of the power amplification. On the 

other side, it reduced the source of the disturbance itself 

because it lowered the muscles’ LE and then the extra-torque 

given by of the robot. 

From a motor adaptation perspective, feedback is also very 

important [48]. In our experiment, beyond the augmented 

visual feedback, users could rely on the strong haptic response 

generated by the physical interaction with the exoskeleton. 

The skin mechanoreceptors could indeed perceive the action 

of the robot as an increased pressure on the arm, before the 

actual movement started [49].  

In this study we found a very fast adaptation of subjects to 

 

Fig. 5 Steady-state kinematic and dynamic variables averaged for each tested gain separately across all subjects and repetitions for Trial 1 

(A), Trial 2 (B), trial 3 (C). Each bar represents values obtained by averaging the over the 20 steady-state cycles. Error bars indicate the 99% 

confidence interval of each variable. Horizontal braces indicate a statistically significant difference obtained through ANOVA. 
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the disturbances induced by the EMG controller, as shown by 

the analysis of the cycle-by-cycle evolution of the recorded 

variables (see Fig 3, Fig. 4 and Fig. 5). All participants could 

recover the target movement pace and amplitude within 3 

cycles after an abrupt assistance activation, regardless of the 

specific movement condition experienced during the trials. 

Coherently, the IEMG recordings reached a stationary level 

within the same number of cycles.  

This result is in partial disagreement with the one observed 

by Ferris [16][50], who applied a similar EMG proportional 

control to a powered ankle-foot orthosis and observed a very 

slow adaptation of subjects to the action of the robot (i.e., in 

the order of minutes). Certainly, part of this divergence can be 

attributed to the differences in the neural mechanisms 

underlying the movement generation of lower and upper limb. 

Nonetheless, we believe a crucial role was played by the 

augmented feedback we provided to participants through 

visual stimuli that was not present in the setup of Ferris and 

colleagues. This augmented feedback could have been 

fundamental for the subjects to build an internal dynamic 

model of the assistance provided by the exoskeleton and then 

to quickly learn how to control it. This would be in agreement 

with results of several studies [51][52], which showed that the 

visual feedback could improve the adaptation speed of healthy 

subjects with respect to haptic alone. Clearly this claim cannot 

be proven without further experiments comparing the 

performance achieved with and without the visual feedback. 

In a previous experiment authors used the same 

experimental apparatus to provide movement assistance 

during flexion-extension movement at the elbow by using an 

inverse dynamic approach to estimate the movement torque 

and provide assistance [15]. The assistive torque provided by 

the robot was a constant fraction of the estimated muscular 

torque. 

By comparing the results of the two experiments a faster 

adaptation to the proportional EMG control emerged (2-3 

cycles are need to recover the normal performance after the 

assistance activation in EMG-based control, while 5-10 cycles 

were required for the inverse dynamic based approach) despite 

the lower accuracy of the EMG-based assistive torque. We 

supposed that this behavior can be attributed to a sort of “error 

enhancing strategy” [53] that is embedded in the proportional 

EMG approach. In fact, the action of the controller amplifies 

the effect of a given muscular activation on the performed 

movement. This forces the subject to converge faster to the 

correct movement. 

A peculiarity of our experiment is that participants chose 

the preferred level of assistance autonomously, with the 

experimenter only exhorting them to have it increased until 

they felt comfortable. As revealed by the statistical 

significance of the main effect of subject ID factor on the 

average cycle torque (all p’s < 10
-6, see Table I), each subject 

received a different assistive torque over the cycles. As a 

result, the normalized effort reduction differed among subjects 

(the main effect of subject ID on IEMG was statistically 

significant for the all the trials). Importantly, all subjects chose 

a gain that was sufficient to effectively reduce the movement 

effort. This confirms the high acceptability of the proposed 

controller. If this was not the case, subjects could have chosen 

a low gain value so as to minimize the effect of the 

exoskeleton assistance. 

It is also of interest to note that subjects could successfully 

manage higher gains then the preferred ones. When the gain 

was set to 150% subjects could still fulfill the task and further 

reduce their IEMGs. Even if we did not assess the cognitive 

effort of participants through ad-hoc tests, all subject 

completed the sequence at 150% of the preferred gain without 

raising concerns about comfort or task difficulty. Probably, the 

fact that we increased progressively the assistance level during 

the task (see Fig. 3 and Fig. 4) helped the subject to 

familiarize with the assistance control and then to successfully 

manage higher gains than the preferred one.  

At the same time we did not find any statistically relevant 

difference between the first and the second iteration of any 

trial, meaning that by repeating the same task after about half 

an hour did not improve the performance. This result suggests 

that there was not long term adaptation of subjects to the 

proposed controller in any tested condition.  

B. Generalization of the results 

The proposed approach has been tested in a restricted 

scenario: single joint flexion-extension task. Clearly, this is a 

narrow set of the possible movements performed in daily-

living and the extension to other conditions has to be proven. 

Nevertheless we believe that some key results emerging 

from this experiment can be generalized to any robot mediated 

assistance. The most relevant finding is that in order to assist 

the movement, it is not necessary to provide a constant 

fraction of the muscular torque. Users can adapt easily to the 

variable level of assistance (variable as a fraction of the torque 

needed to perform the movement). As a consequence, an 

accurate estimate of the muscular torque may be unnecessary. 

For the same reason, the use of complex EMG to torque 

calibration methods, which requires user-specific and session-

specific calibration, could be relaxed to find a compromise 

that works in home environment.  

What instead emerged to be a sufficient condition for 

assisting user is the aforementioned coherence, the persistent 

consistency of the robotic assistance with the user movement 

intention in terms of direction and intensity of the action. The 

assistive torque provided by our simple method follows the 

action of the users and increases with the effort spent by them.  

This is of particular relevance when moving to the real-

world scenario where multiple-joint assistance is needed. Each 

human articulation is indeed spanned by several agonist and 

antagonist muscle groups to power the joint. Each muscle can 

act on more than one joint or can actuate more than one degree 

of freedom of the same joint. In this situation our approach 

could be applied after a careful selection of relevant muscle 

activations to be measured, coherently with the intended 

movement. On the other hand, any EMG-torque estimation 

algorithm would require to measure the activation of any 

muscle involved in the movement and calibrate the resulting 

system in a very wide set of possible movement condition. 



> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 

 

9 

C. Application fields 

EMG based control has been frequently used for assistance 

[25]-[28] or augmentation [54]. Few cases reported about its 

use in rehabilitation as a therapeutic device [56]-[58]. 

Importantly, none of these studies explored the time of 

adaptation of subjects to the controller or the resulting 

movement accuracy, which are two fundamental requirements 

to be satisfied for using the assistive system in daily-life 

situations. 

Our findings suggest that subject can adapt almost 

instantaneously to a simple EMG proportional control and that 

movement accuracy is not significantly affected by the system. 

Notably, these performances are reached without a real muscle 

torque estimate. This is another clear advantage in order to 

move outside laboratories. In fact it relaxes the need of 

complex inter- and intra- subject calibrations, which are hardly 

doable without specific tools and wide technical knowledge. 

The proposed control amplifies the movement intent of the 

user with the goal of reducing the effort spent in performing a 

desired task. The main objective of the assistance is to reduce 

the effort spent in a normal task rather than to give super-

human ability to the user. It is our opinion that this kind of 

assistance can have wide applicability in a large number of 

daily living situations.  

In the case of elderly people, for example, lifting weights 

that are normal for a healthy adult can be challenging and even 

risky. An exoskeleton could act as a supplementary muscle 

apparatus that covers the gap with the adult subject and gives 

independence to the elderly user. 

Another possible field of application for this kind of 

assistance could be in the factory environment, where tasks 

are performed iteratively and the endurance could be an issue. 

By lowering the effort spent in each movement the number of 

iteration that can be performed before the onset of fatigue can 

be increased. 

Finally, subjects affected by muscle weakness could benefit 

from this kind of assistance. In these subjects, neural control is 

intact but muscles are not strong enough to perform simple 

manipulation task or even to support the weight of the arm 

itself. The proposed system could catch the intention of the 

user through a small EMG increase and help the user to 

perform the movement. 

V. CONCLUSIONS AND FUTURE WORKS 

The main goal of the present work was to explore the 

closed-loop usability of a simplified assistive control that does 

not require estimating the muscle torque (and therefore any 

specific calibration) to be successfully used in robot 

assistance, making it appealing in a real-world scenario. 

We found strong evidence that a proportional EMG control 

is effective in providing movement assistance, while leaving 

the full control of the arm to the user. Specifically, we verify 

that despite the simplified assistive strategy the user keep the 

same kinematical accuracy (in term of amplitude and timing of 

the movement) while save considerable effort in performing 

the movement. We tested the adaptation time to this kind of 

assistance and found that very low (few seconds). This result 

confirmed our hypothesis that the human adaptation ability 

could compensate for the poor accuracy of the proposed 

controller in estimating the torque produced by muscles. Also, 

our results suggested that there is no need to feedback a 

constant fraction of torque to the user. This led us to the idea 

that a sufficient condition for assisting user is to continuously 

correlate the EMG activations with the user movement 

intention in terms of direction and intensity of the action.  

Future works will aim to exploit these findings to the case 

of multiple degree of freedom robot-mediated assistance and 

discrete movement. 
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